Skip to main content
Top
Published in: Respiratory Research 1/2018

Open Access 01-12-2018 | Research

Urban particulate matter (PM) suppresses airway antibacterial defence

Authors: Xiaoyan Chen, Jinguo Liu, Jian Zhou, Jian Wang, Cuicui Chen, Yuanlin Song, Jue Pan

Published in: Respiratory Research | Issue 1/2018

Login to get access

Abstract

Background

Epidemiological studies have shown that urban particulate matter (PM) increases the risk of respiratory infection. However, the underlying mechanisms are poorly understood. PM has been postulated to suppress the activation of airway epithelial innate defence in response to infection.

Methods

The effects of PM on antibacterial defence were studied using an in vitro infection model. The levels of antimicrobial peptides were measured using RT-PCR and ELISA. In addition to performing colony-forming unit counts and flow cytometry, confocal microscopy was performed to directly observe bacterial invasion upon PM exposure.

Results

We found that PM PM increased bacterial invasion by impairing the induction of β-defensin-2 (hBD-2), but not the other antimicrobial peptides (APMs) secreted by airway epithelium. PM further increases bacteria-induced ROS production, which is accompanied by an accelerated cell senescence and a decrease in bacteria-induced hBD-2 production, and the antioxidant NAC treatment attenuates these effects. The PM exposure further upregulated the expression of IL-8 but downregulated the expression of IL-13 upon infection.

Conclusions

PM promotes bacterial invasion of airway epithelial cells by attenuating the induction of hBD-2 via an oxidative burst. These findings associate PM with an increased susceptibility to infection. These findings provide insight into the underlying mechanisms regarding the pathogenesis of particulate matter.
Literature
15.
go back to reference Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004;42(3):1024–9.PubMedPubMedCentralCrossRef Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004;42(3):1024–9.PubMedPubMedCentralCrossRef
19.
go back to reference Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127(3):594–604. https://doi.org/10.1038/sj.jid.5700599.PubMedCrossRef Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127(3):594–604. https://​doi.​org/​10.​1038/​sj.​jid.​5700599.PubMedCrossRef
29.
go back to reference Sanchez-Perez Y, Chirino YI, Osornio-Vargas AR, Herrera LA, Morales-Barcenas R, Lopez-Saavedra A, Gonzalez-Ramirez I, Miranda J, Garcia-Cuellar CM. Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells. Toxicol Lett. 2014;225(1):12–9. https://doi.org/10.1016/j.toxlet.2013.11.018.PubMedCrossRef Sanchez-Perez Y, Chirino YI, Osornio-Vargas AR, Herrera LA, Morales-Barcenas R, Lopez-Saavedra A, Gonzalez-Ramirez I, Miranda J, Garcia-Cuellar CM. Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells. Toxicol Lett. 2014;225(1):12–9. https://​doi.​org/​10.​1016/​j.​toxlet.​2013.​11.​018.PubMedCrossRef
33.
go back to reference Sun G, Crissman K, Norwood J, Richards J, Slade R, Hatch GE. Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter. Am J Physiol Lung Cell Mol Physiol. 2001;281(4):L807–15.PubMedCrossRef Sun G, Crissman K, Norwood J, Richards J, Slade R, Hatch GE. Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter. Am J Physiol Lung Cell Mol Physiol. 2001;281(4):L807–15.PubMedCrossRef
Metadata
Title
Urban particulate matter (PM) suppresses airway antibacterial defence
Authors
Xiaoyan Chen
Jinguo Liu
Jian Zhou
Jian Wang
Cuicui Chen
Yuanlin Song
Jue Pan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2018
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0700-0

Other articles of this Issue 1/2018

Respiratory Research 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.