Skip to main content
Top
Published in: Clinical Reviews in Allergy & Immunology 1/2016

01-02-2016

Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS)

Authors: Pu Li, Ping Huang, Ye Yang, Mu Hao, Hongwei Peng, Fei Li

Published in: Clinical Reviews in Allergy & Immunology | Issue 1/2016

Login to get access

Abstract

Autoimmune lymphoproliferative syndrome (ALPS), a disorder characterized by immune dysregulation due to disrupted lymphocyte homeostasis, is mainly resulted from the mutations in FAS-mediated apoptotic pathway. In addition, other mutations of the genes such as Fas-ligand (FASLG), Caspase 10 (CASP10) and Caspase 8 (CASP8), NRAS and KRAS have also been observed in a small number of patients with ALPS or ALPS-related disorders. However, approximately 20-30 % of patients with ALPS have unidentified defect. Its clinical manifestations observed in multiple family members include unexplained lymphadenopathy, hepatosplenomegaly, autoimmune cytopenias such as thrombocytopenia, neutropenia, and anemia due to excessive production of antibodies by lymphocytes, elevated number of double-negative T (DNT) cells, and increased risk of lymphoma. As a very rare disease, ALPS was first characterized in the early 1990s. More than 300 families with hereditary ALPS have been reported till now; nearly 500 patients from these families have been studied and followed worldwide over the last 20 years. ALPS has historically considered as a primary immune defect presenting in early childhood, however, recent studies have shown that it may be more common than previous thought because adult onset presentation is increasingly becoming recognized and more adult ALPS patients are diagnosed. The new genetic and biological insights have improved the understanding of ALPS and a number of targeted therapeutic strategies such as mycophenolate mofetil, sirolimus, and pentostatin have been successfully applied in ALPS patients with promising treatment efficacy. This article comprehensively reviews the clinical and laboratory manifestations, new research advances in the molecular pathogenesis, diagnosis and treatments of this disorder.
Literature
2.
go back to reference Canale VC, Smith CH (1967) Chronic lymphadenopathysimulating malignant Lymphoma.J. Paediatr 70:891–899CrossRef Canale VC, Smith CH (1967) Chronic lymphadenopathysimulating malignant Lymphoma.J. Paediatr 70:891–899CrossRef
3.
go back to reference Sneller MC, Straus SE, Jaffe ES et al (1992) A novel lymphoproliferative⁄autoimmune syndrome resembling murinelpr⁄gld disease. J Clin Invest 90:334–341PubMedCentralCrossRefPubMed Sneller MC, Straus SE, Jaffe ES et al (1992) A novel lymphoproliferative⁄autoimmune syndrome resembling murinelpr⁄gld disease. J Clin Invest 90:334–341PubMedCentralCrossRefPubMed
4.
go back to reference Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Naqata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317CrossRefPubMed Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Naqata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317CrossRefPubMed
5.
go back to reference Takahashi T, Tanaka M, Brannan CI et al (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–976CrossRefPubMed Takahashi T, Tanaka M, Brannan CI et al (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–976CrossRefPubMed
6.
go back to reference Rieux-Laucat F, Le Deist F, Hivroz C et al (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349CrossRefPubMed Rieux-Laucat F, Le Deist F, Hivroz C et al (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349CrossRefPubMed
7.
go back to reference Fisher GH, Rosenberg FJ, Straus SE et al (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946CrossRefPubMed Fisher GH, Rosenberg FJ, Straus SE et al (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946CrossRefPubMed
8.
go back to reference Worth A, Thrasher AJ H, Gaspar HB (2006) Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol 133:124–140CrossRefPubMed Worth A, Thrasher AJ H, Gaspar HB (2006) Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol 133:124–140CrossRefPubMed
9.
go back to reference Hansford JR, Pal M, Poplawski N et al (2013) In utero and early postnatal presentation of autoimmune lymphoproliferative syndrome in a family with a novel FAS mutation. Haematologica 98:e38–e39PubMedCentralCrossRefPubMed Hansford JR, Pal M, Poplawski N et al (2013) In utero and early postnatal presentation of autoimmune lymphoproliferative syndrome in a family with a novel FAS mutation. Haematologica 98:e38–e39PubMedCentralCrossRefPubMed
10.
go back to reference Deutsch M, Tsopanou E, Dourakis SP (2004) The autoimmune lymphoproliferative syndrome (Canale-Smith) in adulthood. Clin Rheumatol 23:43–44CrossRefPubMed Deutsch M, Tsopanou E, Dourakis SP (2004) The autoimmune lymphoproliferative syndrome (Canale-Smith) in adulthood. Clin Rheumatol 23:43–44CrossRefPubMed
11.
go back to reference der Werff V, ten Bosch J (2003) Autoimmune lymphoproliferative syndrome: etiology, diagnosis, and management. Paediatr Drugs 5:185–193CrossRef der Werff V, ten Bosch J (2003) Autoimmune lymphoproliferative syndrome: etiology, diagnosis, and management. Paediatr Drugs 5:185–193CrossRef
12.
go back to reference Teachey DT, Seif AE, Grupp SA (2010) Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol 148:205–216PubMedCentralCrossRefPubMed Teachey DT, Seif AE, Grupp SA (2010) Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol 148:205–216PubMedCentralCrossRefPubMed
13.
go back to reference Jackson CE, Puck JM (1999) Autoimmune lymphoproliferative syndrome, a Disorder of apoptosis. Curr Opin Pediatr 11:521–527CrossRefPubMed Jackson CE, Puck JM (1999) Autoimmune lymphoproliferative syndrome, a Disorder of apoptosis. Curr Opin Pediatr 11:521–527CrossRefPubMed
14.
go back to reference Straus SE, Jaffe ES, Puck JM et al (2001) The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98:194–200CrossRefPubMed Straus SE, Jaffe ES, Puck JM et al (2001) The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98:194–200CrossRefPubMed
15.
go back to reference Teachey DT, Manno CS, Axsom KM et al (2005) Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood 105:2443–2448CrossRefPubMed Teachey DT, Manno CS, Axsom KM et al (2005) Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS). Blood 105:2443–2448CrossRefPubMed
16.
go back to reference Madkaikar M, Mhatre S, Gupta M, Ghosh K (2011) Advances in autoimmune lymphoproliferative syndromes. Eur J Haematol 87:1–9CrossRefPubMed Madkaikar M, Mhatre S, Gupta M, Ghosh K (2011) Advances in autoimmune lymphoproliferative syndromes. Eur J Haematol 87:1–9CrossRefPubMed
18.
go back to reference Oliveira JB, Bleesing JJ, Dianzani U et al (2010) Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome: report from the 2009 NIH International Workshop. Blood 116:e35–e40PubMedCentralCrossRefPubMed Oliveira JB, Bleesing JJ, Dianzani U et al (2010) Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome: report from the 2009 NIH International Workshop. Blood 116:e35–e40PubMedCentralCrossRefPubMed
19.
go back to reference Bleesing JJ, Brown MR, Novicio C (2002) A composite picture of TcR alpha/ beta (+) CD4(−)CD8(+) T Cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol 104:21–30CrossRefPubMed Bleesing JJ, Brown MR, Novicio C (2002) A composite picture of TcR alpha/ beta (+) CD4(−)CD8(+) T Cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol 104:21–30CrossRefPubMed
20.
go back to reference Bleesing JJ, Brown MR, Dale JK et al (2001) TcR-alpha/beta (+) CD4(−)CD8(+)T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin Immunol 100:314–324CrossRefPubMed Bleesing JJ, Brown MR, Dale JK et al (2001) TcR-alpha/beta (+) CD4(−)CD8(+)T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin Immunol 100:314–324CrossRefPubMed
21.
go back to reference Fischer K, Voelkl S, Heymann J et al (2005) Isolation and characterization of human antigen-specific TCR alpha beta + CD4(−)CD8(+) double-negative regulatory T cells. Blood 105:2828–2835CrossRefPubMed Fischer K, Voelkl S, Heymann J et al (2005) Isolation and characterization of human antigen-specific TCR alpha beta + CD4(−)CD8(+) double-negative regulatory T cells. Blood 105:2828–2835CrossRefPubMed
22.
go back to reference Muppidi J, Porter M, Siegel RM (2004) Measurement of apoptosis and other forms of cell death. Curr Protoc Immunol. Chapter 3:Unit 3.17 Muppidi J, Porter M, Siegel RM (2004) Measurement of apoptosis and other forms of cell death. Curr Protoc Immunol. Chapter 3:Unit 3.17
23.
go back to reference Holzelova E, Vonarbourg C, Stolzenberg MC et al (2004) Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med 351:1409–1418CrossRefPubMed Holzelova E, Vonarbourg C, Stolzenberg MC et al (2004) Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med 351:1409–1418CrossRefPubMed
24.
go back to reference Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W (1999) An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130:591–601CrossRefPubMed Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W (1999) An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med 130:591–601CrossRefPubMed
25.
go back to reference Caminha I, Fleisher TA, Hornung RL et al (2010) Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 125:946–949PubMedCentralCrossRefPubMed Caminha I, Fleisher TA, Hornung RL et al (2010) Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 125:946–949PubMedCentralCrossRefPubMed
26.
go back to reference Bowen RA, Dowdell KC, Dale JK et al (2012) Elevated vitamin B12 levels in autoimmune lymphoproliferative syndrome attributable to elevated haptocorrin in lymphocytes. Clin Biochem 45:490–492PubMedCentralCrossRefPubMed Bowen RA, Dowdell KC, Dale JK et al (2012) Elevated vitamin B12 levels in autoimmune lymphoproliferative syndrome attributable to elevated haptocorrin in lymphocytes. Clin Biochem 45:490–492PubMedCentralCrossRefPubMed
27.
go back to reference Neven B, Magerus-Chatinet A, Florkin B et al (2011) A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118:4798–4807CrossRefPubMed Neven B, Magerus-Chatinet A, Florkin B et al (2011) A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118:4798–4807CrossRefPubMed
28.
go back to reference Campagnoli MF, Garbarini L, Quarello P et al (2006) The broad spectrum of autoimmune lymphoproliferative disease:molecular bases, clinical features and long-term follow-up in 31 patients. Haematologica 91:538–541PubMed Campagnoli MF, Garbarini L, Quarello P et al (2006) The broad spectrum of autoimmune lymphoproliferative disease:molecular bases, clinical features and long-term follow-up in 31 patients. Haematologica 91:538–541PubMed
29.
go back to reference Price S, Shaw PA, Seitz A et al (2014) Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123:1989–1999PubMedCentralCrossRefPubMed Price S, Shaw PA, Seitz A et al (2014) Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123:1989–1999PubMedCentralCrossRefPubMed
30.
go back to reference Bleesing JJ, Straus SE, Fleisher TA (2000) Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am 47:1291–1310CrossRefPubMed Bleesing JJ, Straus SE, Fleisher TA (2000) Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am 47:1291–1310CrossRefPubMed
31.
go back to reference Rao VK, Straus SE (2006) Causes and consequences of the autoimmune lymphoproliferative syndrome. Hematology 11:15–23CrossRefPubMed Rao VK, Straus SE (2006) Causes and consequences of the autoimmune lymphoproliferative syndrome. Hematology 11:15–23CrossRefPubMed
32.
go back to reference Chun HJ, Zheng L, Ahmad M et al (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399CrossRefPubMed Chun HJ, Zheng L, Ahmad M et al (2002) Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–399CrossRefPubMed
33.
go back to reference Shah S, Wu E, Rao VK, Tarrant TK (2014) Autoimmune lymphoproliferative syndrome: an update and review of the literature. Curr Allergy Asthma Rep 14:462PubMedCentralCrossRefPubMed Shah S, Wu E, Rao VK, Tarrant TK (2014) Autoimmune lymphoproliferative syndrome: an update and review of the literature. Curr Allergy Asthma Rep 14:462PubMedCentralCrossRefPubMed
34.
go back to reference Simesen de Bielke MG, Yancoski J, Rocco C et al (2012) A missense mutation in the extracellular domain of Fas: the most common change in Argentinean patients with autoimmune lymphoproliferative syndrome represents a founder effect. J Clin Immunol 32:1197–1203CrossRefPubMed Simesen de Bielke MG, Yancoski J, Rocco C et al (2012) A missense mutation in the extracellular domain of Fas: the most common change in Argentinean patients with autoimmune lymphoproliferative syndrome represents a founder effect. J Clin Immunol 32:1197–1203CrossRefPubMed
35.
go back to reference Tadaki H, Saitsu H, Kanegane H et al (2011) Exonic deletion of CASP10 in a patient presenting with systemic juvenile idiopathic arthritis, but not with autoimmune lymphoproliferative syndrome type IIa. Int J Immunogenet 38:287–293CrossRefPubMed Tadaki H, Saitsu H, Kanegane H et al (2011) Exonic deletion of CASP10 in a patient presenting with systemic juvenile idiopathic arthritis, but not with autoimmune lymphoproliferative syndrome type IIa. Int J Immunogenet 38:287–293CrossRefPubMed
36.
37.
go back to reference Takagi M, Shinoda K, Piao J et al (2011) Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 117:2887–2890CrossRefPubMed Takagi M, Shinoda K, Piao J et al (2011) Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood 117:2887–2890CrossRefPubMed
38.
go back to reference Niemela JE, Lu L, Fleisher TA et al (2011) Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117:2883–2886PubMedCentralCrossRefPubMed Niemela JE, Lu L, Fleisher TA et al (2011) Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117:2883–2886PubMedCentralCrossRefPubMed
39.
go back to reference Guo Q, Zhang J, Li J et al (2013) Forced miR-146a expression causes autoimmune lymphoproliferativesyndrome in mice via downregulation of Fas in germinal center B cells. Blood 121:4875–4883CrossRefPubMed Guo Q, Zhang J, Li J et al (2013) Forced miR-146a expression causes autoimmune lymphoproliferativesyndrome in mice via downregulation of Fas in germinal center B cells. Blood 121:4875–4883CrossRefPubMed
40.
go back to reference Dowdell KC, Niemela JE, Price S et al (2010) Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115:5164–5169PubMedCentralCrossRefPubMed Dowdell KC, Niemela JE, Price S et al (2010) Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115:5164–5169PubMedCentralCrossRefPubMed
41.
go back to reference Oliveira JB, Bidere N, Niemela JE et al (2007) NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 104:8953–8958PubMedCentralCrossRefPubMed Oliveira JB, Bidere N, Niemela JE et al (2007) NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 104:8953–8958PubMedCentralCrossRefPubMed
42.
go back to reference Dianzani U, Bragardo M, DiFranco D et al (1997) Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood 89:2871–2879PubMed Dianzani U, Bragardo M, DiFranco D et al (1997) Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood 89:2871–2879PubMed
43.
go back to reference Ramenghi U, Bonissoni S, Migliaretti G et al (2000) Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 95:3176–3182PubMed Ramenghi U, Bonissoni S, Migliaretti G et al (2000) Deficiency of the Fas apoptosis pathway without Fas gene mutations is a familial trait predisposing to development of autoimmune diseases and cancer. Blood 95:3176–3182PubMed
44.
go back to reference Snow AL, Marsh RA, Krummey SM et al (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 119:2976–2989PubMedCentralPubMed Snow AL, Marsh RA, Krummey SM et al (2009) Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 119:2976–2989PubMedCentralPubMed
45.
go back to reference Rudman Spergel A, Walkovich K, Price S et al (2013) Autoimmune lymphoproliferative syndrome misdiagnosed as hemophagocytic lymphohistiocytosis. Pediatrics 132:e1440–e1444PubMedCentralCrossRefPubMed Rudman Spergel A, Walkovich K, Price S et al (2013) Autoimmune lymphoproliferative syndrome misdiagnosed as hemophagocytic lymphohistiocytosis. Pediatrics 132:e1440–e1444PubMedCentralCrossRefPubMed
46.
go back to reference Nomura K, Kanegane H, Otsubo K et al (2011) Autoimmune lymphoproliferative syndrome mimicking chronic active Epstein-Barr virus infection. Int J Hematol 93:760–764CrossRefPubMed Nomura K, Kanegane H, Otsubo K et al (2011) Autoimmune lymphoproliferative syndrome mimicking chronic active Epstein-Barr virus infection. Int J Hematol 93:760–764CrossRefPubMed
47.
go back to reference Rao VK, Price S, Perkins K et al (2009) Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS). Pediatric Blood Cancer 52:847–852PubMedCentralCrossRefPubMed Rao VK, Price S, Perkins K et al (2009) Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS). Pediatric Blood Cancer 52:847–852PubMedCentralCrossRefPubMed
48.
go back to reference Cooper N, Davies EG, Thrasher AJ (2009) Repeated courses of rituximab for autoimmune cytopenias may precipitate profound hypogammaglobulinaemia requiring replacement intravenous immunoglobulin. Br J Haematol 146:120–122CrossRefPubMed Cooper N, Davies EG, Thrasher AJ (2009) Repeated courses of rituximab for autoimmune cytopenias may precipitate profound hypogammaglobulinaemia requiring replacement intravenous immunoglobulin. Br J Haematol 146:120–122CrossRefPubMed
49.
go back to reference Neven B, Bruneau J, Stolzenberg MC et al (2014) Defective anti-polysaccharide response and splenic marginal zone disorganization in ALPS patients. Blood 124:1597–1609CrossRefPubMed Neven B, Bruneau J, Stolzenberg MC et al (2014) Defective anti-polysaccharide response and splenic marginal zone disorganization in ALPS patients. Blood 124:1597–1609CrossRefPubMed
50.
go back to reference Arora S, Singh N, Chaudhary GK, John MJ (2011) Autoimmune lymphoproliferative syndrome: response to mycophenolate mofetil and pyrimethamine/sulfadoxine in a 5-year-old child. Indian J Hematol Blood Transfus 27:101–103PubMedCentralCrossRefPubMed Arora S, Singh N, Chaudhary GK, John MJ (2011) Autoimmune lymphoproliferative syndrome: response to mycophenolate mofetil and pyrimethamine/sulfadoxine in a 5-year-old child. Indian J Hematol Blood Transfus 27:101–103PubMedCentralCrossRefPubMed
51.
go back to reference Teachey DT, Greiner R, Seif A et al (2009) Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol 145:101–106PubMedCentralCrossRefPubMed Teachey DT, Greiner R, Seif A et al (2009) Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol 145:101–106PubMedCentralCrossRefPubMed
52.
go back to reference Bajwa R, Savelli S, Gross T (2011) Pentostatin for treatment of refractory autoimmune lymphoproliferative syndrome. Pediatr Blood Cancer 57:336–337CrossRefPubMed Bajwa R, Savelli S, Gross T (2011) Pentostatin for treatment of refractory autoimmune lymphoproliferative syndrome. Pediatr Blood Cancer 57:336–337CrossRefPubMed
53.
go back to reference Rao VK, Dugan F, Dale JK et al (2005) Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome. Br J Haematol 129:534–538CrossRefPubMed Rao VK, Dugan F, Dale JK et al (2005) Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome. Br J Haematol 129:534–538CrossRefPubMed
54.
go back to reference Bobé P, Bonardelle D, Benihoud K et al (2006) Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 108:3967CrossRefPubMed Bobé P, Bonardelle D, Benihoud K et al (2006) Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 108:3967CrossRefPubMed
55.
go back to reference Dowdell KC, Pesnicak L, Hoffmann V et al (2009) Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas deficient MRL/lpr(−/−) murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 37:487–494PubMedCentralCrossRefPubMed Dowdell KC, Pesnicak L, Hoffmann V et al (2009) Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas deficient MRL/lpr(−/−) murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 37:487–494PubMedCentralCrossRefPubMed
Metadata
Title
Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS)
Authors
Pu Li
Ping Huang
Ye Yang
Mu Hao
Hongwei Peng
Fei Li
Publication date
01-02-2016
Publisher
Springer US
Published in
Clinical Reviews in Allergy & Immunology / Issue 1/2016
Print ISSN: 1080-0549
Electronic ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-015-8466-y

Other articles of this Issue 1/2016

Clinical Reviews in Allergy & Immunology 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.