Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Unexpected complexity in the interference activity of a cloned influenza defective interfering RNA

Authors: Bo Meng, Kirsten Bentley, Anthony C. Marriott, Paul D. Scott, Nigel J. Dimmock, Andrew J. Easton

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Defective interfering (DI) viruses are natural antivirals made by nearly all viruses. They have a highly deleted genome (thus being non-infectious) and interfere with the replication of genetically related infectious viruses. We have produced the first potential therapeutic DI virus for the clinic by cloning an influenza A DI RNA (1/244) which was derived naturally from genome segment 1. This is highly effective in vivo, and has unexpectedly broad-spectrum activity with two different modes of action: inhibiting influenza A viruses through RNA interference, and all other (interferon-sensitive) respiratory viruses through stimulating interferon type I.

Results

We have investigated the RNA inhibitory mechanism(s) of DI 1/244 RNA. Ablation of initiation codons does not diminish interference showing that no protein product is required for protection. Further analysis indicated that 1/244 DI RNA interferes by replacing the cognate full-length segment 1 RNA in progeny virions, while interfering with the expression of genome segment 1, its cognate RNA, and genome RNAs 2 and 3, but not genome RNA 6, a representative of the non-polymerase genes.

Conclusions

Our data contradict the dogma that a DI RNA only interferes with expression from its cognate full-length segment. There is reciprocity as cloned segment 2 and 3 DI RNAs inhibited expression of RNAs from a segment 1 target. These data demonstrate an unexpected complexity in the mechanism of interference by this cloned therapeutic DI RNA.
Literature
1.
go back to reference Dohner D, Monroe S, Weiss B, Schlesinger S. Oligonucleotide mapping studies of standard and defective Sindbis virus RNA. J Virol. 1979;29:794–8.PubMedPubMedCentral Dohner D, Monroe S, Weiss B, Schlesinger S. Oligonucleotide mapping studies of standard and defective Sindbis virus RNA. J Virol. 1979;29:794–8.PubMedPubMedCentral
2.
go back to reference Kennedy SI. Sequence relationships between the genome and the intracellular RNA species of standard and defective-interfering Semliki Forest virus. J Mol Biol. 1976;108:491–511.CrossRefPubMed Kennedy SI. Sequence relationships between the genome and the intracellular RNA species of standard and defective-interfering Semliki Forest virus. J Mol Biol. 1976;108:491–511.CrossRefPubMed
3.
go back to reference Leppert M, Kort L, Kolakofsky D. Further characterization of Sendai virus DI-RNAs: a model for their generation. Cell. 1977;12:539–52.CrossRefPubMed Leppert M, Kort L, Kolakofsky D. Further characterization of Sendai virus DI-RNAs: a model for their generation. Cell. 1977;12:539–52.CrossRefPubMed
4.
go back to reference Jennings PA, Finch JT, Winter G, Robertson JS. Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell. 1983;34:619–27.CrossRefPubMed Jennings PA, Finch JT, Winter G, Robertson JS. Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell. 1983;34:619–27.CrossRefPubMed
5.
go back to reference Nayak DP, Tobita K, Janda JM, Davis AR, De BK. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus. J Virol. 1978;28:375–86.PubMedPubMedCentral Nayak DP, Tobita K, Janda JM, Davis AR, De BK. Homologous interference mediated by defective interfering influenza virus derived from a temperature-sensitive mutant of influenza virus. J Virol. 1978;28:375–86.PubMedPubMedCentral
6.
go back to reference Dimmock NJ, Easton AJ. Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol. 2014;88:5217–27.CrossRefPubMedPubMedCentral Dimmock NJ, Easton AJ. Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol. 2014;88:5217–27.CrossRefPubMedPubMedCentral
7.
go back to reference Dimmock NJ, Easton AJ. Cloned defective interfering influenza RNA and a possible pan-specific treatment of respiratory virus diseases. Viruses. 2015;7:3768–88.CrossRefPubMedPubMedCentral Dimmock NJ, Easton AJ. Cloned defective interfering influenza RNA and a possible pan-specific treatment of respiratory virus diseases. Viruses. 2015;7:3768–88.CrossRefPubMedPubMedCentral
8.
go back to reference Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature. 2006;439:490–2.CrossRefPubMed Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature. 2006;439:490–2.CrossRefPubMed
9.
go back to reference Hutchinson EC, von Kirchbach JC, Gog JR, Digard P. Genome packaging in influenza a virus. J Gen Virol. 2010;91:313–28.CrossRefPubMed Hutchinson EC, von Kirchbach JC, Gog JR, Digard P. Genome packaging in influenza a virus. J Gen Virol. 2010;91:313–28.CrossRefPubMed
10.
go back to reference Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication. 5th ed: Wolters Kluwer/Lippincott and Williams: Philadelphia; 2007. Palese P, Shaw ML. Orthomyxoviridae: the viruses and their replication. 5th ed: Wolters Kluwer/Lippincott and Williams: Philadelphia; 2007.
12.
13.
go back to reference Re GG, Gupta KC, Kingsbury DW. Genomic and copy-back 3′ termini in Sendai virus defective interfering RNA species. J Virol. 1983;45:659–64.PubMedPubMedCentral Re GG, Gupta KC, Kingsbury DW. Genomic and copy-back 3′ termini in Sendai virus defective interfering RNA species. J Virol. 1983;45:659–64.PubMedPubMedCentral
14.
15.
go back to reference Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein. PLoS Pathog. 2015;11:e1004924.CrossRefPubMedPubMedCentral Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein. PLoS Pathog. 2015;11:e1004924.CrossRefPubMedPubMedCentral
16.
go back to reference Plotch SJ, Bouloy M, Ulmanen I, Krug RM. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23:847–58.CrossRefPubMed Plotch SJ, Bouloy M, Ulmanen I, Krug RM. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23:847–58.CrossRefPubMed
17.
go back to reference Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–8.CrossRefPubMed Dias A, Bouvier D, Crépin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–8.CrossRefPubMed
18.
go back to reference Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee GG. Two aromatic residues in the PB2 subunit of influenza a RNA polymerase are crucial for cap binding. J Biol Chem. 2003;278:20381–8.CrossRefPubMed Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee GG. Two aromatic residues in the PB2 subunit of influenza a RNA polymerase are crucial for cap binding. J Biol Chem. 2003;278:20381–8.CrossRefPubMed
19.
go back to reference Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol. 2008;15:500–6.CrossRefPubMed Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok RW, Ortin J, Hart DJ, Cusack S. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol. 2008;15:500–6.CrossRefPubMed
20.
go back to reference Jorba N, Coloma R, Ortin J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 2009;5:e1000462.CrossRefPubMedPubMedCentral Jorba N, Coloma R, Ortin J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 2009;5:e1000462.CrossRefPubMedPubMedCentral
21.
go back to reference Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, et al. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature. 2009;458:909–13.CrossRefPubMed Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, et al. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature. 2009;458:909–13.CrossRefPubMed
22.
go back to reference Vreede FT, Brownlee GG. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol. 2007;81:2196–204.CrossRefPubMed Vreede FT, Brownlee GG. Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol. 2007;81:2196–204.CrossRefPubMed
23.
go back to reference Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol. 2011;8:207–15.CrossRefPubMedPubMedCentral Resa-Infante P, Jorba N, Coloma R, Ortin J. The influenza virus RNA synthesis machine: advances in its structure and function. RNA Biol. 2011;8:207–15.CrossRefPubMedPubMedCentral
24.
go back to reference Lee MK, Bae SH, Park CJ, Cheong HK, Cheong C, Choi BS. A single-nucleotide natural variation (U4 to C4) in an influenza a virus promoter exhibits a large structural change: implications for differential viral RNA synthesis by RNA-dependent RNA polymerase. Nucleic Acids Res. 2003;31:1216–23.CrossRefPubMedPubMedCentral Lee MK, Bae SH, Park CJ, Cheong HK, Cheong C, Choi BS. A single-nucleotide natural variation (U4 to C4) in an influenza a virus promoter exhibits a large structural change: implications for differential viral RNA synthesis by RNA-dependent RNA polymerase. Nucleic Acids Res. 2003;31:1216–23.CrossRefPubMedPubMedCentral
25.
go back to reference Fodor E, Pritlove DC, Brownlee GG. The influenza virus panhandle is involved in the initiation of transcription. J Virol. 1994;68:4092–6.PubMedPubMedCentral Fodor E, Pritlove DC, Brownlee GG. The influenza virus panhandle is involved in the initiation of transcription. J Virol. 1994;68:4092–6.PubMedPubMedCentral
26.
go back to reference Tiley LS, Hagen M, Matthews JT, Krystal M. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. J Virol. 1994;68:5108–16.PubMedPubMedCentral Tiley LS, Hagen M, Matthews JT, Krystal M. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. J Virol. 1994;68:5108–16.PubMedPubMedCentral
27.
go back to reference González S, Ortín J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol. 1999;73:631–7.PubMedPubMedCentral González S, Ortín J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol. 1999;73:631–7.PubMedPubMedCentral
28.
29.
go back to reference Mena I, Jambrina E, Albo C, Perales B, Ortín J, Arrese M, Vallejo D, Portela A. Mutational analysis of influenza a virus nucleoprotein: identification of mutations that affect RNA replication. J Virol. 1999;73:1186–94.PubMedPubMedCentral Mena I, Jambrina E, Albo C, Perales B, Ortín J, Arrese M, Vallejo D, Portela A. Mutational analysis of influenza a virus nucleoprotein: identification of mutations that affect RNA replication. J Virol. 1999;73:1186–94.PubMedPubMedCentral
30.
go back to reference Falcón AM, Marión RM, Zürcher T, Gómez P, Portela A, Nieto A, Ortín J. Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol. 2004;78:3880–8.CrossRefPubMedPubMedCentral Falcón AM, Marión RM, Zürcher T, Gómez P, Portela A, Nieto A, Ortín J. Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. J Virol. 2004;78:3880–8.CrossRefPubMedPubMedCentral
31.
go back to reference Thierry F, Danos O. Use of specific single stranded DNA probes cloned in M13 to study the RNA synthesis of four temperature-sensitive mutants of HK/68 influenza virus. Nucleic Acids Res. 1982;10:2925–38.CrossRefPubMedPubMedCentral Thierry F, Danos O. Use of specific single stranded DNA probes cloned in M13 to study the RNA synthesis of four temperature-sensitive mutants of HK/68 influenza virus. Nucleic Acids Res. 1982;10:2925–38.CrossRefPubMedPubMedCentral
32.
go back to reference Robb NC, Smith M, Vreede FT, Fodor E. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol. 2009;90:1398–407.CrossRefPubMed Robb NC, Smith M, Vreede FT, Fodor E. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol. 2009;90:1398–407.CrossRefPubMed
33.
go back to reference Rao DD, Huang AS. Interference among defective interfering particles of vesicular stomatitis virus. J Virol. 1982;41:210–21.PubMedPubMedCentral Rao DD, Huang AS. Interference among defective interfering particles of vesicular stomatitis virus. J Virol. 1982;41:210–21.PubMedPubMedCentral
34.
go back to reference Schubert M, Lazzarini RA. Structure and origin of a snapback defective interfering particle RNA of vesicular stomatitis virus. J Virol. 1981;37:661–72.PubMedPubMedCentral Schubert M, Lazzarini RA. Structure and origin of a snapback defective interfering particle RNA of vesicular stomatitis virus. J Virol. 1981;37:661–72.PubMedPubMedCentral
35.
36.
go back to reference Whelan SPJ, Wertz GW. Defective interfering particles of vesicular stomatitis virus: functions of the genomic termini. Semin Virol. 1997;8:131–9.CrossRef Whelan SPJ, Wertz GW. Defective interfering particles of vesicular stomatitis virus: functions of the genomic termini. Semin Virol. 1997;8:131–9.CrossRef
37.
go back to reference Finke S, Conzelmann KK. Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol. 1999;73:3818–25.PubMedPubMedCentral Finke S, Conzelmann KK. Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol. 1999;73:3818–25.PubMedPubMedCentral
38.
go back to reference Amesse LS, Pridgen CL, Kingsbury DW. Sendai virus DI RNA species with conserved virus genome termini and extensive internal deletions. Virology. 1982;118:17–27.CrossRefPubMed Amesse LS, Pridgen CL, Kingsbury DW. Sendai virus DI RNA species with conserved virus genome termini and extensive internal deletions. Virology. 1982;118:17–27.CrossRefPubMed
39.
go back to reference Leppert M, Kolakofsky D. Effect of defective interfering particles on plus- and minus- strand leader RNAs in vesicular stomatitis virus-infected cells. J Virol. 1980;35:704–9.PubMedPubMedCentral Leppert M, Kolakofsky D. Effect of defective interfering particles on plus- and minus- strand leader RNAs in vesicular stomatitis virus-infected cells. J Virol. 1980;35:704–9.PubMedPubMedCentral
40.
go back to reference Giachetti C, Holland JJ. Vesicular stomatitis virus and its defective interfering particles exhibit in vitro transcriptional and replicative competition for purified L-NS polymerase molecules. Virology. 1989;170:264–7.CrossRefPubMed Giachetti C, Holland JJ. Vesicular stomatitis virus and its defective interfering particles exhibit in vitro transcriptional and replicative competition for purified L-NS polymerase molecules. Virology. 1989;170:264–7.CrossRefPubMed
41.
go back to reference Duhaut SD, Dimmock NJ. Heterologous protection of mice from a lethal human H1N1 influenza a virus infection by H3N8 equine defective interfering virus: comparison of defective RNA sequences isolated from the DI inoculum and mouse lung. Virology. 1998;248:241–53.CrossRefPubMed Duhaut SD, Dimmock NJ. Heterologous protection of mice from a lethal human H1N1 influenza a virus infection by H3N8 equine defective interfering virus: comparison of defective RNA sequences isolated from the DI inoculum and mouse lung. Virology. 1998;248:241–53.CrossRefPubMed
42.
go back to reference Dimmock NJ, Dove BK, Meng B, Scott PD, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll MW, Easton AJ. Comparison of the protection of ferrets against pandemic 2009 influenza a virus (H1N1) by 244 DI influenza virus and oseltamivir. Antivir Res. 2012;96:376–85.CrossRefPubMedPubMedCentral Dimmock NJ, Dove BK, Meng B, Scott PD, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll MW, Easton AJ. Comparison of the protection of ferrets against pandemic 2009 influenza a virus (H1N1) by 244 DI influenza virus and oseltamivir. Antivir Res. 2012;96:376–85.CrossRefPubMedPubMedCentral
43.
go back to reference Easton AJ, Scott PD, Edworthy NL, Meng B, Marriott AC, Dimmock NJ. A novel broad-spectrum treatment for respiratory virus infections: influenza-based defective interfering virus provides protection against pneumovirus infection in vivo. Vaccine. 2011;29:2777–84.CrossRefPubMed Easton AJ, Scott PD, Edworthy NL, Meng B, Marriott AC, Dimmock NJ. A novel broad-spectrum treatment for respiratory virus infections: influenza-based defective interfering virus provides protection against pneumovirus infection in vivo. Vaccine. 2011;29:2777–84.CrossRefPubMed
44.
go back to reference Scott PD, Meng B, Marriott AC, Easton AJ, Dimmock NJ. Defective interfering influenza a virus protects in vivo against disease caused by a heterologous influenza B virus. J Gen Virol. 2011;92:2122–32.CrossRefPubMed Scott PD, Meng B, Marriott AC, Easton AJ, Dimmock NJ. Defective interfering influenza a virus protects in vivo against disease caused by a heterologous influenza B virus. J Gen Virol. 2011;92:2122–32.CrossRefPubMed
45.
go back to reference Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, et al. Generation of influenza a viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A. 1999;96:9345–50.CrossRefPubMedPubMedCentral Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, et al. Generation of influenza a viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A. 1999;96:9345–50.CrossRefPubMedPubMedCentral
46.
go back to reference Duhaut SD, Dimmock NJ. Defective segment 1 RNAs that interfere with production of infectious influenza a virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. J Gen Virol. 2002;83:403–11.CrossRefPubMed Duhaut SD, Dimmock NJ. Defective segment 1 RNAs that interfere with production of infectious influenza a virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. J Gen Virol. 2002;83:403–11.CrossRefPubMed
47.
go back to reference Duhaut S, Dimmock NJ. Approximately 150 nucleotides from the 5′ end of an influenza a segment 1 defective virion RNA are needed for genome stability during passage of defective virus in infected cells. Virology. 2000;275:278–85.CrossRefPubMed Duhaut S, Dimmock NJ. Approximately 150 nucleotides from the 5′ end of an influenza a segment 1 defective virion RNA are needed for genome stability during passage of defective virus in infected cells. Virology. 2000;275:278–85.CrossRefPubMed
48.
go back to reference Mann A, Marriott AC, Balasingam S, Lambkin R, Oxford JS, Dimmock NJ. Interfering vaccine (defective interfering influenza a virus) protects ferrets from influenza, and allows them to develop solid immunity to reinfection. Vaccine. 2006;24:4290–6.CrossRefPubMed Mann A, Marriott AC, Balasingam S, Lambkin R, Oxford JS, Dimmock NJ. Interfering vaccine (defective interfering influenza a virus) protects ferrets from influenza, and allows them to develop solid immunity to reinfection. Vaccine. 2006;24:4290–6.CrossRefPubMed
49.
go back to reference Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, Xu X, Lu X, Katz J, Cox N, Matsuoka Y. Evaluation of a genetically modified reassortant H5N1 influenza a virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305:192–200.CrossRefPubMed Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, Xu X, Lu X, Katz J, Cox N, Matsuoka Y. Evaluation of a genetically modified reassortant H5N1 influenza a virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305:192–200.CrossRefPubMed
50.
go back to reference Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis E Sousa C. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140:397–408.CrossRefPubMed Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis E Sousa C. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140:397–408.CrossRefPubMed
51.
go back to reference Duhaut SD, Dimmock NJ. Defective influenza a virus generated entirely from plasmids: its RNA is expressed in infected mouse lung and modulates disease. J Virol Methods. 2003;108:75–82.CrossRefPubMed Duhaut SD, Dimmock NJ. Defective influenza a virus generated entirely from plasmids: its RNA is expressed in infected mouse lung and modulates disease. J Virol Methods. 2003;108:75–82.CrossRefPubMed
52.
go back to reference Carr SM, Carnero E, García-Sastre A, Brownlee GG, Fodor E. Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology. 2006;344:492–508.CrossRefPubMed Carr SM, Carnero E, García-Sastre A, Brownlee GG, Fodor E. Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology. 2006;344:492–508.CrossRefPubMed
53.
go back to reference Long JS, Giotis ES, Moncorgé O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS. Species difference in ANP32A underlies influenza a virus polymerase host restriction. Nature. 2016;529:101–4.CrossRefPubMedPubMedCentral Long JS, Giotis ES, Moncorgé O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS. Species difference in ANP32A underlies influenza a virus polymerase host restriction. Nature. 2016;529:101–4.CrossRefPubMedPubMedCentral
54.
go back to reference Te Velthuis AJ, Robb NC, Kapanidis AN, Fodor E. The role of the priming loop in influenza a virus RNA synthesis. Nat Microbiol. 2016;1:16029.CrossRef Te Velthuis AJ, Robb NC, Kapanidis AN, Fodor E. The role of the priming loop in influenza a virus RNA synthesis. Nat Microbiol. 2016;1:16029.CrossRef
55.
go back to reference Czudai-Matwich V, Otte A, Matrosovich M, Gabriel G, Klenk HD. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol. 2014;88:8735–42.CrossRefPubMedPubMedCentral Czudai-Matwich V, Otte A, Matrosovich M, Gabriel G, Klenk HD. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol. 2014;88:8735–42.CrossRefPubMedPubMedCentral
56.
go back to reference Turrell L, Hutchinson EC, Vreede FT, Fodor E. Regulation of influenza a virus nucleoprotein oligomerization by phosphorylation. J Virol. 2015;89:1452–5.CrossRefPubMed Turrell L, Hutchinson EC, Vreede FT, Fodor E. Regulation of influenza a virus nucleoprotein oligomerization by phosphorylation. J Virol. 2015;89:1452–5.CrossRefPubMed
57.
go back to reference Duhaut SD, McCauley JW. Defective RNAs inhibit the assembly of influenza virus genome segments in a segment-specific manner. Virology. 1996;216:326–37.CrossRefPubMed Duhaut SD, McCauley JW. Defective RNAs inhibit the assembly of influenza virus genome segments in a segment-specific manner. Virology. 1996;216:326–37.CrossRefPubMed
58.
go back to reference von Magnus P. Studies on interference in experimental influenza. I. Biological observations. Arkiv fur Kemi, Mineralogi och Geologi. 1947;24b:1–6. von Magnus P. Studies on interference in experimental influenza. I. Biological observations. Arkiv fur Kemi, Mineralogi och Geologi. 1947;24b:1–6.
59.
go back to reference von Magnus P. Incomplete forms of influenza virus. Adv Virus Res. 1954;21:59–79.CrossRef von Magnus P. Incomplete forms of influenza virus. Adv Virus Res. 1954;21:59–79.CrossRef
60.
go back to reference Bangham CRM, Kirkwood TBL. Defective interfering particles and virus evolution. Trends Microbiol. 1993;1:260–4.CrossRefPubMed Bangham CRM, Kirkwood TBL. Defective interfering particles and virus evolution. Trends Microbiol. 1993;1:260–4.CrossRefPubMed
61.
go back to reference Holland JJ. Generation and replication of defective viral genomes. In: Fields BN, Knipe DM, editors. Virology. 2nd ed. New York: Raven Press; 1990. p. 77–99. Holland JJ. Generation and replication of defective viral genomes. In: Fields BN, Knipe DM, editors. Virology. 2nd ed. New York: Raven Press; 1990. p. 77–99.
62.
go back to reference Dimmock NJ. Antiviral activity of defective interfering influenza virus in vivo. In: Myint S, Taylor-Robinson D, editors. Viral and other infections of the respiratory tract. London: Chapman and Hall; 1996. p. 421–45.CrossRef Dimmock NJ. Antiviral activity of defective interfering influenza virus in vivo. In: Myint S, Taylor-Robinson D, editors. Viral and other infections of the respiratory tract. London: Chapman and Hall; 1996. p. 421–45.CrossRef
63.
go back to reference Roux L, Simon AE, Holland JJ. Effects of defective interfering viruses on viral replication and pathogenesis in vitro and in vivo. Adv Virus Res. 1991;40:181–211.CrossRefPubMed Roux L, Simon AE, Holland JJ. Effects of defective interfering viruses on viral replication and pathogenesis in vitro and in vivo. Adv Virus Res. 1991;40:181–211.CrossRefPubMed
64.
go back to reference Laske T, Heldt FS, Hoffmann H, Frensing T, Reichl U. Modeling the intracellular replication of influenza a virus in the presence of defective interfering RNAs. Virus Res. 2015;213:90–9.CrossRefPubMed Laske T, Heldt FS, Hoffmann H, Frensing T, Reichl U. Modeling the intracellular replication of influenza a virus in the presence of defective interfering RNAs. Virus Res. 2015;213:90–9.CrossRefPubMed
65.
go back to reference Akkina RK, Chambers TM, Nayak DP. Expression of defective-interfering influenza virus specific transcripts and polypeptides in infected cells. J Virol. 1984;51:395–403.PubMedPubMedCentral Akkina RK, Chambers TM, Nayak DP. Expression of defective-interfering influenza virus specific transcripts and polypeptides in infected cells. J Virol. 1984;51:395–403.PubMedPubMedCentral
66.
go back to reference Mänz B, Götz V, Wunderlich K, Eisel J, Kirchmair J, Stech J, Stech O, Chase G, Frank R, Schwemmle M. Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza a virus. J Biol Chem. 2011;286:8414–24.CrossRefPubMed Mänz B, Götz V, Wunderlich K, Eisel J, Kirchmair J, Stech J, Stech O, Chase G, Frank R, Schwemmle M. Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza a virus. J Biol Chem. 2011;286:8414–24.CrossRefPubMed
67.
go back to reference Wunderlich K, Mayer D, Ranadheera C, Holler A-S, Mänz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M. Identification of a PA-binding peptide with inhibitory activity against influenza a and B virus replication. PLoS One. 2009;4:e7517.CrossRefPubMedPubMedCentral Wunderlich K, Mayer D, Ranadheera C, Holler A-S, Mänz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M. Identification of a PA-binding peptide with inhibitory activity against influenza a and B virus replication. PLoS One. 2009;4:e7517.CrossRefPubMedPubMedCentral
68.
go back to reference Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein. PLoS Pathog. 2015;11(5):e1004924. Boergeling Y, Rozhdestvensky TS, Schmolke M, Resa-Infante P, Robeck T, Randau G, Wolff T, Gabriel G, Brosius J, Ludwig S. Evidence for a novel mechanism of influenza virus-induced type I interferon expression by a defective RNA-encoded protein. PLoS Pathog. 2015;11(5):e1004924.
69.
go back to reference Duhaut SD, Dimmock NJ. Defective segment 1 RNAs that interfere with the production of infectious influenza virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. J Gen Virol. 2002;83:403–11.CrossRefPubMed Duhaut SD, Dimmock NJ. Defective segment 1 RNAs that interfere with the production of infectious influenza virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. J Gen Virol. 2002;83:403–11.CrossRefPubMed
70.
go back to reference Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature (London). 2006;439:490–2.CrossRef Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, Kawaoka Y. Architecture of ribonucleoprotein complexes in influenza a virus particles. Nature (London). 2006;439:490–2.CrossRef
71.
go back to reference Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A. 2006;103:19123–7.CrossRefPubMedPubMedCentral Harris A, Cardone G, Winkler DC, Heymann JB, Brecher M, White JM, Steven AC. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A. 2006;103:19123–7.CrossRefPubMedPubMedCentral
72.
go back to reference Chou YY, Heaton NS, Gao Q, Palese P, Singer RH, Singer R, Lionnet T. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog. 2013;9:e1003358.CrossRefPubMedPubMedCentral Chou YY, Heaton NS, Gao Q, Palese P, Singer RH, Singer R, Lionnet T. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. PLoS Pathog. 2013;9:e1003358.CrossRefPubMedPubMedCentral
73.
go back to reference Nakatsu S, Sagara H, Sakai-Tagawa Y, Sugaya N, Noda T, Kawaoka Y. Complete and incomplete genome packaging of influenza a and B viruses. MBio. 2016;7:e01248–16.7 Nakatsu S, Sagara H, Sakai-Tagawa Y, Sugaya N, Noda T, Kawaoka Y. Complete and incomplete genome packaging of influenza a and B viruses. MBio. 2016;7:e01248–16.7
74.
75.
go back to reference Hatada E, Hasegawa M, Mukaigawa J, Shimizu K, Fukuda R. Control of influenza virus gene expresssion: quantitative analysis of each viral RNA species in infected cells. J Biochem. 1989;105:537–46.CrossRefPubMed Hatada E, Hasegawa M, Mukaigawa J, Shimizu K, Fukuda R. Control of influenza virus gene expresssion: quantitative analysis of each viral RNA species in infected cells. J Biochem. 1989;105:537–46.CrossRefPubMed
76.
go back to reference Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR. Influenza a virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci U S A. 2010;107:11525–30.CrossRefPubMedPubMedCentral Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR. Influenza a virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci U S A. 2010;107:11525–30.CrossRefPubMedPubMedCentral
77.
go back to reference Umbach JL, Yen H-L, Poon LLM, Cullen BR. Influenza a virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. MBio. 2010;1:e00204–10.CrossRefPubMedPubMedCentral Umbach JL, Yen H-L, Poon LLM, Cullen BR. Influenza a virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. MBio. 2010;1:e00204–10.CrossRefPubMedPubMedCentral
78.
go back to reference Cobbin JC, Ong C, Verity E, Gilbertson BP, Rockman SP, Brown LE. Influenza virus PB1 and neuraminidase gene segments can cosegregate during vaccine reassortment driven by interactions in the PB1 coding region. J Virol. 2014;88:8971–80.CrossRefPubMedPubMedCentral Cobbin JC, Ong C, Verity E, Gilbertson BP, Rockman SP, Brown LE. Influenza virus PB1 and neuraminidase gene segments can cosegregate during vaccine reassortment driven by interactions in the PB1 coding region. J Virol. 2014;88:8971–80.CrossRefPubMedPubMedCentral
79.
go back to reference Essere B, Yver M, Gavazzi C, Terrier O, Isel C, Fournier E, Giroux F, Textoris J, Julien T, Socratous C, et al. Critical role of segment-specific packaging signals in genetic reassortment of influenza a viruses. Proc Natl Acad Sci U S A. 2013;110:E3840–8.CrossRefPubMedPubMedCentral Essere B, Yver M, Gavazzi C, Terrier O, Isel C, Fournier E, Giroux F, Textoris J, Julien T, Socratous C, et al. Critical role of segment-specific packaging signals in genetic reassortment of influenza a viruses. Proc Natl Acad Sci U S A. 2013;110:E3840–8.CrossRefPubMedPubMedCentral
80.
go back to reference Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD, Cavalier A, Rolland JP, Thomas D, Lina B, Isel C, Marquet R. Interaction network linking the human H3N2 influenza a virus genomic RNA segments. Vaccine. 2012;30:7359–67.CrossRefPubMed Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD, Cavalier A, Rolland JP, Thomas D, Lina B, Isel C, Marquet R. Interaction network linking the human H3N2 influenza a virus genomic RNA segments. Vaccine. 2012;30:7359–67.CrossRefPubMed
81.
go back to reference Gavazzi C, Yver M, Isel C, Smyth RP, Rosa-Calatrava M, Lina B, Moulès V, Marquet R. A functional sequence-specific interaction between influenza a virus genomic RNA segments. Proc Natl Acad Sci U S A. 2013;110:16604–9.CrossRefPubMedPubMedCentral Gavazzi C, Yver M, Isel C, Smyth RP, Rosa-Calatrava M, Lina B, Moulès V, Marquet R. A functional sequence-specific interaction between influenza a virus genomic RNA segments. Proc Natl Acad Sci U S A. 2013;110:16604–9.CrossRefPubMedPubMedCentral
82.
go back to reference Gavazzi C, Isel C, Fournier E, Moules V, Cavalier A, Thomas D, Lina B, Marquet R. An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza a virus: comparison with a human H3N2 virus. Nucleic Acids Res. 2013;41:1241–54.CrossRefPubMed Gavazzi C, Isel C, Fournier E, Moules V, Cavalier A, Thomas D, Lina B, Marquet R. An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza a virus: comparison with a human H3N2 virus. Nucleic Acids Res. 2013;41:1241–54.CrossRefPubMed
83.
go back to reference Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza a genome and consequences for genetic reassortment. Trends Microbiol. 2014;22:446–55.CrossRefPubMed Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza a genome and consequences for genetic reassortment. Trends Microbiol. 2014;22:446–55.CrossRefPubMed
Metadata
Title
Unexpected complexity in the interference activity of a cloned influenza defective interfering RNA
Authors
Bo Meng
Kirsten Bentley
Anthony C. Marriott
Paul D. Scott
Nigel J. Dimmock
Andrew J. Easton
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0805-6

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.