Skip to main content
Top
Published in: Current Osteoporosis Reports 2/2014

01-06-2014 | Biomechanics (M Silva and P Zysset, Section Editors)

Ultrasound to Assess Bone Quality

Authors: Kay Raum, Quentin Grimal, Peter Varga, Reinhard Barkmann, Claus C. Glüer, Pascal Laugier

Published in: Current Osteoporosis Reports | Issue 2/2014

Login to get access

Abstract

Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.
Literature
1.
go back to reference Ashman RB, Cowin SC, Rho JY, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61.PubMedCrossRef Ashman RB, Cowin SC, Rho JY, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61.PubMedCrossRef
2.
go back to reference Rho JY. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics. 1996;34:777–83.PubMedCrossRef Rho JY. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics. 1996;34:777–83.PubMedCrossRef
3.•
go back to reference Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone. 2011;49:1020–6. A multi-scale assessment of cortical bone combining low frequency ultrasound and scanning acoustic microscopy that evidences that porosity explains most of the variations of effective elasticity (ie, mm-scale).PubMedCrossRef Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone. 2011;49:1020–6. A multi-scale assessment of cortical bone combining low frequency ultrasound and scanning acoustic microscopy that evidences that porosity explains most of the variations of effective elasticity (ie, mm-scale).PubMedCrossRef
4.
go back to reference Baron C, Talmant M, Laugier P. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. J Acoust Soc Am. 2007;122:1810.PubMedCrossRef Baron C, Talmant M, Laugier P. Effect of porosity on effective diagonal stiffness coefficients (cii) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study. J Acoust Soc Am. 2007;122:1810.PubMedCrossRef
5.
go back to reference Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1432–41.PubMedCrossRef Wear KA. Ultrasonic scattering from cancellous bone: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1432–41.PubMedCrossRef
6.
go back to reference Hakulinen MA, Day JS, Toyras J, Weinans H, Jurvelin JS. Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol. 2006;51:1633–48.PubMedCrossRef Hakulinen MA, Day JS, Toyras J, Weinans H, Jurvelin JS. Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol. 2006;51:1633–48.PubMedCrossRef
7.
go back to reference Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep. 2005;3:64–9.PubMedCrossRef Padilla F, Laugier P. Recent developments in trabecular bone characterization using ultrasound. Curr Osteoporos Rep. 2005;3:64–9.PubMedCrossRef
8.
go back to reference Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Bone. 2008;42:1193–202.PubMedCrossRef Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P. Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements. Bone. 2008;42:1193–202.PubMedCrossRef
9.
go back to reference Padilla F, Jenson F, Laugier P. Estimation of trabecular thickness using ultrasonic backscatter. Ultrason Imaging. 2006;28:3–22.PubMedCrossRef Padilla F, Jenson F, Laugier P. Estimation of trabecular thickness using ultrasonic backscatter. Ultrason Imaging. 2006;28:3–22.PubMedCrossRef
10.
go back to reference Wear KA, Laib A. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:979–86.PubMedCrossRef Wear KA, Laib A. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 2003;50:979–86.PubMedCrossRef
11.
go back to reference Hoffmeister BK, Whitten SA, Kaste SC, Rho JY. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone. Osteoporos Int. 2002;13:26–32.PubMedCrossRef Hoffmeister BK, Whitten SA, Kaste SC, Rho JY. Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone. Osteoporos Int. 2002;13:26–32.PubMedCrossRef
12.
go back to reference Karjalainen JP, Toyras J, Riekkinen O, Hakulinen M, Jurvelin JS. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. Ultrasound Med Biol. 2009;35:1376–84.PubMedCrossRef Karjalainen JP, Toyras J, Riekkinen O, Hakulinen M, Jurvelin JS. Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. Ultrasound Med Biol. 2009;35:1376–84.PubMedCrossRef
13.
go back to reference Riekkinen O, Hakulinen MA, Lammi MJ, Jurvelin JS, Kallioniemi A, Toyras J. Acoustic properties of trabecular bone—relationships to tissue composition. Ultrasound Med Biol. 2007;33:1438–44.PubMedCrossRef Riekkinen O, Hakulinen MA, Lammi MJ, Jurvelin JS, Kallioniemi A, Toyras J. Acoustic properties of trabecular bone—relationships to tissue composition. Ultrasound Med Biol. 2007;33:1438–44.PubMedCrossRef
14.••
go back to reference Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One. 2013;8:e58043. A study showing that micro-fibril orientation is the main determinant of the observed undulations of micro-elastic properties measured by scanning acoustic microscopy in regions of constant mineralization in osteonal lamellar bone.PubMedCentralPubMedCrossRef Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, et al. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One. 2013;8:e58043. A study showing that micro-fibril orientation is the main determinant of the observed undulations of micro-elastic properties measured by scanning acoustic microscopy in regions of constant mineralization in osteonal lamellar bone.PubMedCentralPubMedCrossRef
15.
go back to reference Muller M, Mitton D, Talmant M, Johnson P, Laugier P. Nonlinear ultrasound can detect accumulated damage in human bone. J Biomech. 2008;41:1062–8.PubMedCrossRef Muller M, Mitton D, Talmant M, Johnson P, Laugier P. Nonlinear ultrasound can detect accumulated damage in human bone. J Biomech. 2008;41:1062–8.PubMedCrossRef
16.
go back to reference Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P. Nondestructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One. 2014;9:e83599.PubMedCentralPubMedCrossRef Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P. Nondestructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One. 2014;9:e83599.PubMedCentralPubMedCrossRef
17.
go back to reference Moreschi H, Calle S, Guerard S, Mitton D, Renaud G, Defontaine M. Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proc Inst Mech Eng H. 2011;225:282–95.PubMed Moreschi H, Calle S, Guerard S, Mitton D, Renaud G, Defontaine M. Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proc Inst Mech Eng H. 2011;225:282–95.PubMed
18.
go back to reference Raum K, Reisshauer J, Brandt J. Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A. 2004;71A:430–8.CrossRef Raum K, Reisshauer J, Brandt J. Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A. 2004;71A:430–8.CrossRef
19.
go back to reference Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, et al. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol. 2005;31:1225–35.PubMedCrossRef Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, et al. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol. 2005;31:1225–35.PubMedCrossRef
20.••
go back to reference Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodeling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36. A very important paper re-examining cortical bone as a source of bone loss in the appendicular skeleton. Following this paper, cortical bone got front stage attention from many researchers.PubMedCrossRef Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodeling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36. A very important paper re-examining cortical bone as a source of bone loss in the appendicular skeleton. Following this paper, cortical bone got front stage attention from many researchers.PubMedCrossRef
21.
go back to reference Kanis JA, Johnell O, Oden A, Dawson A, De LC, Jonsson B. Ten-year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.PubMedCrossRef Kanis JA, Johnell O, Oden A, Dawson A, De LC, Jonsson B. Ten-year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12:989–95.PubMedCrossRef
22.
go back to reference Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton III LJ. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981;67:328–35.PubMedCentralPubMedCrossRef Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton III LJ. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981;67:328–35.PubMedCentralPubMedCrossRef
23.
go back to reference Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.PubMed Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.PubMed
24.
go back to reference Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25:983–93.PubMedCentralPubMedCrossRef Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25:983–93.PubMedCentralPubMedCrossRef
25.
go back to reference Gluer CC. A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1524–8.PubMedCrossRef Gluer CC. A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1524–8.PubMedCrossRef
26.
go back to reference Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1179–96.PubMedCrossRef Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1179–96.PubMedCrossRef
27.
go back to reference Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13:89–91.PubMedCrossRef Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13:89–91.PubMedCrossRef
28.
go back to reference Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res. 1997;12:1280–8.PubMedCrossRef Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res. 1997;12:1280–8.PubMedCrossRef
29.
go back to reference Marin F, Gonzalez-Macias J, Diez-Perez A, Palma S, Delgado-Rodriguez M. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res. 2006;21:1126–35.PubMedCrossRef Marin F, Gonzalez-Macias J, Diez-Perez A, Palma S, Delgado-Rodriguez M. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res. 2006;21:1126–35.PubMedCrossRef
30.
go back to reference Meziere F, Muller M, Dobigny B, Bossy E, Derode A. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves. J Acoust Soc Am. 2013;133:643–52.PubMedCrossRef Meziere F, Muller M, Dobigny B, Bossy E, Derode A. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves. J Acoust Soc Am. 2013;133:643–52.PubMedCrossRef
31.
32.
go back to reference Pakula M, Padilla F, Laugier P. Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz. J Acoust Soc Am. 2009;126:3301–10.PubMedCrossRef Pakula M, Padilla F, Laugier P. Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz. J Acoust Soc Am. 2009;126:3301–10.PubMedCrossRef
33.
go back to reference Hoffman JJ, Nelson AM, Holland MR, Miller JG. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography. J Acoust Soc Am. 2012;132:1830–7.PubMedCentralPubMedCrossRef Hoffman JJ, Nelson AM, Holland MR, Miller JG. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography. J Acoust Soc Am. 2012;132:1830–7.PubMedCentralPubMedCrossRef
34.
go back to reference Anderson CC, Bauer AQ, Holland MR, Pakula M, Laugier P, Bretthorst GL, et al. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. J Acoust Soc Am. 2010;128:2940–8.PubMedCentralPubMedCrossRef Anderson CC, Bauer AQ, Holland MR, Pakula M, Laugier P, Bretthorst GL, et al. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. J Acoust Soc Am. 2010;128:2940–8.PubMedCentralPubMedCrossRef
35.
go back to reference Mizuno K, Somiya H, Kubo T, Matsukawa M, Otani T, Tsujimoto T. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study. J Acoust Soc Am. 2010;128:3181–9.PubMedCrossRef Mizuno K, Somiya H, Kubo T, Matsukawa M, Otani T, Tsujimoto T. Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: an in vitro study. J Acoust Soc Am. 2010;128:3181–9.PubMedCrossRef
36.••
go back to reference Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. The most recent and the most comprehensive view of the field of bone quantitative ultrasound. Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. The most recent and the most comprehensive view of the field of bone quantitative ultrasound.
37.
go back to reference Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. 2010;9:499–510.PubMedCrossRef Reisinger AG, Pahr DH, Zysset PK. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol. 2010;9:499–510.PubMedCrossRef
38.
go back to reference Tiburtius S, Schrof S, Molnar F, Varga P, Peyrin F, Grimal Q, et al. On the elastic properties of mineralized turkey leg tendon tissue: multi-scale model and experiment. Biomech Model Mechanobiol. 2014. doi:10.1007/s10237-013-0550-8:.PubMed Tiburtius S, Schrof S, Molnar F, Varga P, Peyrin F, Grimal Q, et al. On the elastic properties of mineralized turkey leg tendon tissue: multi-scale model and experiment. Biomech Model Mechanobiol. 2014. doi:10.​1007/​s10237-013-0550-8:​.PubMed
39.
go back to reference Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, et al. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater. 2013;9:8118–27.PubMedCrossRef Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, et al. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater. 2013;9:8118–27.PubMedCrossRef
40.
go back to reference Reznikov N, Almany-Magal R, Shahar R, Weiner S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone. 2013;52:676–83.PubMedCrossRef Reznikov N, Almany-Magal R, Shahar R, Weiner S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone. 2013;52:676–83.PubMedCrossRef
41.•
go back to reference Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, et al. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech. 2012;45:2264–70. The first systematic SAM-SRμCT study that measured the tissue scale stiffness tensor, degree of mineralization, and cortical porosity in the human femoral shaft.PubMedCrossRef Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, et al. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech. 2012;45:2264–70. The first systematic SAM-SRμCT study that measured the tissue scale stiffness tensor, degree of mineralization, and cortical porosity in the human femoral shaft.PubMedCrossRef
42.
go back to reference Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40:1308–19.PubMedCrossRef Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40:1308–19.PubMedCrossRef
43.
go back to reference Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.PubMedCrossRef Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.PubMedCrossRef
44.
go back to reference Raum K, Cleveland RO, Peyrin F, Laugier P. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol. 2006;51:747–58.PubMedCrossRef Raum K, Cleveland RO, Peyrin F, Laugier P. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol. 2006;51:747–58.PubMedCrossRef
45.
go back to reference Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, et al. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys Med Biol. 2006;51:733–46.PubMedCrossRef Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, et al. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys Med Biol. 2006;51:733–46.PubMedCrossRef
46.
go back to reference Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A. 2011;108:14416–21.PubMedCentralPubMedCrossRef Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P, et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci U S A. 2011;108:14416–21.PubMedCentralPubMedCrossRef
47.
go back to reference Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.PubMedCrossRef Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.PubMedCrossRef
48.
go back to reference Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–9.PubMedCrossRef Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–9.PubMedCrossRef
49.
go back to reference Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, et al. Do micro-cracks decrease or increase fatigue resistance in cortical bone? J Biomech. 2004;37:1295–303.PubMedCrossRef Sobelman OS, Gibeling JC, Stover SM, Hazelwood SJ, Yeh OC, Shelton DR, et al. Do micro-cracks decrease or increase fatigue resistance in cortical bone? J Biomech. 2004;37:1295–303.PubMedCrossRef
50.
go back to reference Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.PubMedCrossRef Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.PubMedCrossRef
51.
go back to reference Leng H, Reyes MJ, Dong XN, Wang X. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone. 2013;55:288–91.PubMedCrossRef Leng H, Reyes MJ, Dong XN, Wang X. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone. 2013;55:288–91.PubMedCrossRef
53.
go back to reference Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone. 2013;54:8–20.PubMedCrossRef Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone. 2013;54:8–20.PubMedCrossRef
54.
go back to reference Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol. 2011;10:925–37.PubMedCrossRef Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol. 2011;10:925–37.PubMedCrossRef
55.
go back to reference Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin. 2008;11:147–57.PubMedCrossRef Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin. 2008;11:147–57.PubMedCrossRef
56.
go back to reference Parnell WJ, Grimal Q. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface. 2009;6:97–109.PubMedCentralPubMedCrossRef Parnell WJ, Grimal Q. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface. 2009;6:97–109.PubMedCentralPubMedCrossRef
57.
go back to reference Grimal Q, Rus G, Parnell WJ, Laugier P. A two-parameter model of the effective elastic tensor for cortical bone. J Biomech. 2011;44:1621–5.PubMedCrossRef Grimal Q, Rus G, Parnell WJ, Laugier P. A two-parameter model of the effective elastic tensor for cortical bone. J Biomech. 2011;44:1621–5.PubMedCrossRef
58.
go back to reference Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28:313–24.PubMedCentralPubMedCrossRef Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28:313–24.PubMedCentralPubMedCrossRef
59.
go back to reference Lakshmanan S, Bodi A, Raum K. Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1560–70.PubMedCrossRef Lakshmanan S, Bodi A, Raum K. Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:1560–70.PubMedCrossRef
60.
go back to reference Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1417–31.PubMedCrossRef Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1417–31.PubMedCrossRef
61.
go back to reference Saied A, Raum K, Leguerney I, Laugier P. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone. 2008;43:187–94.PubMedCrossRef Saied A, Raum K, Leguerney I, Laugier P. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone. 2008;43:187–94.PubMedCrossRef
62.
go back to reference Rupin F, Saied A, Dalmas D, Peyrin F, Haupert S, Raum K, et al. Assessment of microelastic properties of bone. using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn J Appl Phys. 2009;48. Rupin F, Saied A, Dalmas D, Peyrin F, Haupert S, Raum K, et al. Assessment of microelastic properties of bone. using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn J Appl Phys. 2009;48.
63.••
go back to reference Malo MK, Rohrbach D, Isaksson H, Toyras J, Jurvelin JS, Tamminen IS, et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone. 2013;53:451–8. An experimental SAM study showing the variability and associations of microscale tissue elastic properties and intracortical porosity in men with respect to age in proximal femur shaft and neck regions.PubMedCrossRef Malo MK, Rohrbach D, Isaksson H, Toyras J, Jurvelin JS, Tamminen IS, et al. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone. 2013;53:451–8. An experimental SAM study showing the variability and associations of microscale tissue elastic properties and intracortical porosity in men with respect to age in proximal femur shaft and neck regions.PubMedCrossRef
64.
66.
go back to reference Rohde K, Rohrbach D, Gluer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:302–13.PubMedCrossRef Rohde K, Rohrbach D, Gluer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:302–13.PubMedCrossRef
67.
go back to reference Potsika VT, Grivas KN, Protopappas VC, Vavva MG, Raum K, Rohrbach D, et al. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.09.002. Potsika VT, Grivas KN, Protopappas VC, Vavva MG, Raum K, Rohrbach D, et al. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics. 2013. doi:10.​1016/​j.​ultras.​2013.​09.​002.
68.
go back to reference Hofmann T, Heyroth F, Meinhard H, Franzel W, Raum K. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech. 2006;39:2284–94.CrossRef Hofmann T, Heyroth F, Meinhard H, Franzel W, Raum K. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech. 2006;39:2284–94.CrossRef
69.
go back to reference Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z, et al. Resonant Ultrasound spectroscopic techniques for measurement of the elastic-moduli of solids. Physica B. 1993;183:1–24.CrossRef Migliori A, Sarrao JL, Visscher WM, Bell TM, Lei M, Fisk Z, et al. Resonant Ultrasound spectroscopic techniques for measurement of the elastic-moduli of solids. Physica B. 1993;183:1–24.CrossRef
70.
go back to reference Migliori A, Maynard JD. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev Sci Instrum. 2005;76. doi:10.1063/1.2140494. Migliori A, Maynard JD. Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev Sci Instrum. 2005;76. doi:10.​1063/​1.​2140494.
71.
go back to reference Bernard S, Grimal Q, Laugier P. Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J Acoust Soc Am. 2014;in press. Bernard S, Grimal Q, Laugier P. Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials. J Acoust Soc Am. 2014;in press.
72.••
go back to reference Bernard S, Grimal Q, Laugier P. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater. 2013;18:12–9. The first study showing that resonant ultrasound spectroscopy (RUS) can be applied to measure the full stiffness tensor of small bone specimens with high precision. This is an important milestone as RUS may be used in future systematic routine measurements of the mesoscale stiffness tensor in cortical bone samples for basic bone research, small animal phenotyping, etc.PubMedCrossRef Bernard S, Grimal Q, Laugier P. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater. 2013;18:12–9. The first study showing that resonant ultrasound spectroscopy (RUS) can be applied to measure the full stiffness tensor of small bone specimens with high precision. This is an important milestone as RUS may be used in future systematic routine measurements of the mesoscale stiffness tensor in cortical bone samples for basic bone research, small animal phenotyping, etc.PubMedCrossRef
73.
go back to reference Siegel IM, Anast GT, Fields T. The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet. 1958;107:327–32.PubMed Siegel IM, Anast GT, Fields T. The determination of fracture healing by measurement of sound velocity across the fracture site. Surg Gynecol Obstet. 1958;107:327–32.PubMed
74.
go back to reference Foldes AJ, Rimon A, Keinan DD, Popovtzer MM. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone. 1995;17:363–7.PubMedCrossRef Foldes AJ, Rimon A, Keinan DD, Popovtzer MM. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone. 1995;17:363–7.PubMedCrossRef
75.
go back to reference Moilanen P. Ultrasonic guided waves in bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1277–86.PubMedCrossRef Moilanen P. Ultrasonic guided waves in bone. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1277–86.PubMedCrossRef
76.
go back to reference Talmant M, Kolta S, Roux C, Haguenauer D, Vedel I, Cassou B, et al. In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol. 2009;35:912–9.PubMedCrossRef Talmant M, Kolta S, Roux C, Haguenauer D, Vedel I, Cassou B, et al. In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol. 2009;35:912–9.PubMedCrossRef
77.
go back to reference Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 2004;19:1548–56.PubMedCrossRef Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res. 2004;19:1548–56.PubMedCrossRef
78.
go back to reference Egorov V, Tatarinov A, Sarvazyan N, Wood R, Magidenko L, Amin S, et al. Osteoporosis detection in postmenopausal women using axial transmission multi-frequency bone ultrasonometer: clinical findings. Ultrasonics. 2013. doi:10.1016/j.ultras.2013.08.017. Egorov V, Tatarinov A, Sarvazyan N, Wood R, Magidenko L, Amin S, et al. Osteoporosis detection in postmenopausal women using axial transmission multi-frequency bone ultrasonometer: clinical findings. Ultrasonics. 2013. doi:10.​1016/​j.​ultras.​2013.​08.​017.
79.
go back to reference Sarvazyan A, Tatarinov A, Egorov V, Airapetian S, Kurtenok V, Gatt Jr CJ. Application of the dual-frequency ultrasonometer for osteoporosis detection. Ultrasonics. 2009;49:331–7.PubMedCentralPubMedCrossRef Sarvazyan A, Tatarinov A, Egorov V, Airapetian S, Kurtenok V, Gatt Jr CJ. Application of the dual-frequency ultrasonometer for osteoporosis detection. Ultrasonics. 2009;49:331–7.PubMedCentralPubMedCrossRef
81.
go back to reference Lefebvre F, Deblock Y, Campistron P, Ahite D, Fabre JJ. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. J Biomed Mater Res. 2002;63:441–6.PubMedCrossRef Lefebvre F, Deblock Y, Campistron P, Ahite D, Fabre JJ. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization. J Biomed Mater Res. 2002;63:441–6.PubMedCrossRef
82.
go back to reference Moilanen P, Nicholson PH, Karkkainen T, Wang Q, Timonen J, Cheng S. Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int. 2003;14:1020–7.PubMedCrossRef Moilanen P, Nicholson PH, Karkkainen T, Wang Q, Timonen J, Cheng S. Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int. 2003;14:1020–7.PubMedCrossRef
83.
go back to reference Protopappas VC, Kourtis IC, Kourtis LC, Malizos KN, Massalas CV, Fotiadis DI. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. J Acoust Soc Am. 2007;121:3907–21.PubMedCrossRef Protopappas VC, Kourtis IC, Kourtis LC, Malizos KN, Massalas CV, Fotiadis DI. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones. J Acoust Soc Am. 2007;121:3907–21.PubMedCrossRef
84.
go back to reference Talmant M, Foiret J, Minonzio JG. Guided waves in cortical bone. In: Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. p. 147–80.CrossRef Talmant M, Foiret J, Minonzio JG. Guided waves in cortical bone. In: Laugier P, Haiat G, editors. Bone quantitative ultrasound. Dordrecht: Springer Science+Business Media B.V; 2011. p. 147–80.CrossRef
85.
go back to reference Moilanen P, Talmant M, Bousson V, Nicholson PH, Cheng S, Timonen J, et al. Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:1818.PubMedCrossRef Moilanen P, Talmant M, Bousson V, Nicholson PH, Cheng S, Timonen J, et al. Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:1818.PubMedCrossRef
86.
go back to reference Moilanen P, Talmant M, Nicholson PH, Cheng S, Timonen J, Laugier P. Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:2439–45.PubMedCrossRef Moilanen P, Talmant M, Nicholson PH, Cheng S, Timonen J, Laugier P. Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments. J Acoust Soc Am. 2007;122:2439–45.PubMedCrossRef
87.
go back to reference Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J. Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study. Ultrasound Med Biol. 2007;33:254–62.PubMedCrossRef Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J. Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study. Ultrasound Med Biol. 2007;33:254–62.PubMedCrossRef
88.
go back to reference Foiret J, Minonzio JG, Talmant M, Laugier P. Cortical bone quality assessment using quantitative ultrasound on long bones. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1121–4.PubMed Foiret J, Minonzio JG, Talmant M, Laugier P. Cortical bone quality assessment using quantitative ultrasound on long bones. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1121–4.PubMed
89.
go back to reference Moilanen P, Maatta M, Kilappa V, Xu L, Nicholson PH, Alen M, et al. Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int. 2013;24:723–30.PubMedCrossRef Moilanen P, Maatta M, Kilappa V, Xu L, Nicholson PH, Alen M, et al. Discrimination of fractures by low-frequency axial transmission ultrasound in postmenopausal females. Osteoporos Int. 2013;24:723–30.PubMedCrossRef
90.
go back to reference Kilappa V, Moilanen P, Xu L, Nicholson PH, Timonen J, Cheng S. Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int. 2011;22:1103–13.PubMedCrossRef Kilappa V, Moilanen P, Xu L, Nicholson PH, Timonen J, Cheng S. Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women. Osteoporos Int. 2011;22:1103–13.PubMedCrossRef
91.
go back to reference Minonzio JG, Talmant M, Laugier P. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. J Acoust Soc Am. 2010;127:2913–9.PubMedCrossRef Minonzio JG, Talmant M, Laugier P. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. J Acoust Soc Am. 2010;127:2913–9.PubMedCrossRef
92.
go back to reference Daugschies M, Rohde K, Gluer CC, Barkmann R. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone. Ultrasonics. 2014;54:4–10.PubMedCrossRef Daugschies M, Rohde K, Gluer CC, Barkmann R. The preliminary evaluation of a 1 MHz ultrasound probe for measuring the elastic anisotropy of human cortical bone. Ultrasonics. 2014;54:4–10.PubMedCrossRef
93.
go back to reference Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, et al. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone. 2007;40:37–44.PubMedCrossRef Barkmann R, Laugier P, Moser U, Dencks S, Padilla F, Haiat G, et al. A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone. 2007;40:37–44.PubMedCrossRef
94.
go back to reference Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. In vivo measurements of ultrasound transmission through the human proximal femur. Ultrasound Med Biol. 2008;34:1186–90.PubMedCrossRef Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. In vivo measurements of ultrasound transmission through the human proximal femur. Ultrasound Med Biol. 2008;34:1186–90.PubMedCrossRef
95.
go back to reference Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1197–204.PubMedCrossRef Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, et al. A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1197–204.PubMedCrossRef
96.•
go back to reference Barkmann R, Dencks S, Laugier P, Padilla F, Brixen K, Ryg J, et al. Femur ultrasound (FemUS)–first clinical results on hip fracture discrimination and estimation of femoral BMD. Osteoporos Int. 2010;21:969–76. One of the most significant recent technological developments in bone QUS: the femur scanner to measure the hip.PubMedCrossRef Barkmann R, Dencks S, Laugier P, Padilla F, Brixen K, Ryg J, et al. Femur ultrasound (FemUS)–first clinical results on hip fracture discrimination and estimation of femoral BMD. Osteoporos Int. 2010;21:969–76. One of the most significant recent technological developments in bone QUS: the femur scanner to measure the hip.PubMedCrossRef
97.•
go back to reference Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, et al. Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res. 2013;28:302–12. An experimental study showing the feasibility of measuring circumferential waves propating in the femoral neck. The results suggest that the measured waveform conveys important information of the neck biomechanical competence. This study and Barkman’s paper potentially opens new research routes for the future of clinical QUS.PubMedCrossRef Grimal Q, Grondin J, Guerard S, Barkmann R, Engelke K, Gluer CC, et al. Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res. 2013;28:302–12. An experimental study showing the feasibility of measuring circumferential waves propating in the femoral neck. The results suggest that the measured waveform conveys important information of the neck biomechanical competence. This study and Barkman’s paper potentially opens new research routes for the future of clinical QUS.PubMedCrossRef
98.
go back to reference Barkmann R, Lusse S, Stampa B, Sakata S, Heller M, Gluer CC. Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int. 2000;11:745–55.PubMedCrossRef Barkmann R, Lusse S, Stampa B, Sakata S, Heller M, Gluer CC. Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int. 2000;11:745–55.PubMedCrossRef
99.
go back to reference Sakata S, Barkmann R, Lochmuller EM, Heller M, Gluer CC. Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res. 2004;19:924–30.PubMedCrossRef Sakata S, Barkmann R, Lochmuller EM, Heller M, Gluer CC. Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res. 2004;19:924–30.PubMedCrossRef
100.
go back to reference Rohde K, Rohrbach D, Glueer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;in press. Rohde K, Rohrbach D, Glueer CC, Laugier P, Grimal Q, Raum K, et al. Influence of porosity, pore size and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;in press.
101.
go back to reference Nauleau P, Cochard E, Minonzio JG, Grimal Q, Laugier P, Prada C. Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom. J Acoust Soc Am. 2012;131:EL289–94.PubMedCrossRef Nauleau P, Cochard E, Minonzio JG, Grimal Q, Laugier P, Prada C. Characterization of circumferential guided waves in a cylindrical cortical bone-mimicking phantom. J Acoust Soc Am. 2012;131:EL289–94.PubMedCrossRef
102.
go back to reference Nauleau P, Grimal Q, Minonzio JG, Laugier P, Prada C. Circumferential guided wave measurements of a cylindrical fluid-filled femoral neck mimicking phantom. J Acoust Soc Am. 2014;in press. Nauleau P, Grimal Q, Minonzio JG, Laugier P, Prada C. Circumferential guided wave measurements of a cylindrical fluid-filled femoral neck mimicking phantom. J Acoust Soc Am. 2014;in press.
Metadata
Title
Ultrasound to Assess Bone Quality
Authors
Kay Raum
Quentin Grimal
Peter Varga
Reinhard Barkmann
Claus C. Glüer
Pascal Laugier
Publication date
01-06-2014
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 2/2014
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0205-4

Other articles of this Issue 2/2014

Current Osteoporosis Reports 2/2014 Go to the issue

Muscle and Bone (L Bonewald and M Harrick, Section Editors)

Endocrine Crosstalk Between Muscle and Bone

Muscle and Bone (L Bonewald and M Harrick, Section Editors)

Therapies for Musculoskeletal Disease: Can we Treat Two Birds with One Stone?

Nutrition, Exercise, and Lifestyle in Osteoporosis (C Weaver and S Ferrari, Section Editors)

Prenatal Calcium and Vitamin D Intake, and Bone Mass in Later Life

Biomechanics (M Silva and P Zysset, Section Editors)

Atypical Femoral Fractures, Bisphosphonates, and Mechanical Stress

Biomechanics (M Silva and P Zysset, Section Editors)

Diabetes, Collagen, and Bone Quality