Skip to main content
Top
Published in: Osteoporosis International 4/2011

01-04-2011 | Original Article

Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women

Authors: V. Kilappa, P. Moilanen, L. Xu, P. H. F. Nicholson, J. Timonen, S. Cheng

Published in: Osteoporosis International | Issue 4/2011

Login to get access

Abstract

Summary

Axial transmission velocity of a low-frequency first arriving signal (V LF) was assessed in the radius and tibia of 254 females, and compared to site-matched pQCT measurements. V LF best correlated with cortical BMD, but significantly also with subcortical BMD and cortical thickness. Correlations were strongest for the radius in postmenopausal females.

Introduction

Ultrasonic low-frequency (LF; 0.2–0.4 MHz) axial transmission, based on the first arriving signal (FAS), provides enhanced sensitivity to thickness and endosteal properties of cortical wall of the radius and tibia compared to using higher frequencies (e.g., 1 MHz). This improved sensitivity of the LF approach has not yet been clearly confirmed by an in vivo study on adult subjects. The aims of the present study were to evaluate the extent to which LF measurements reflect cortical thickness and bone mineral density, and to assess whether an individual LF measurement can provide a useful estimate for these bone properties.

Methods

Velocity of the LF FAS (V LF) was assessed in the radius and tibia shaft by a new ultrasonometer (CVRMS = 0.5%) in a cross-sectional study involving 159 premenopausal (20–58 years) and 95 postmenopausal females (45–88 years). Site-matched volumetric total bone mineral density (BMD), cortical bone mineral density (CBMD), subcortical bone mineral density (ScBMD) and cortical thickness (CTh) were assessed using pQCT.

Results

For the postmenopausal females, V LF correlated best with CBMD in the radius (R = 0.850, p < 0.001), but significantly also with ScBMD and CTh (R = 0.759 and R = 0.761, respectively; p < 0.001). Similar trends but weaker correlations were observed for the tibia and for the premenopausal women.

Conclusions

The LF assessment, with an optimal excitation frequency, thus provided good prediction of both cortical thickness and subcortical bone material properties. These results suggest that the LF approach does indeed have enhanced sensitivity for detecting osteoporotic changes that occur deep in the endosteal bone.
Literature
1.
go back to reference Barkmann R, Kantorovich E, Singal C, Hans D, Genant HK, Heller M, Gluer CC (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3(1):1–7PubMedCrossRef Barkmann R, Kantorovich E, Singal C, Hans D, Genant HK, Heller M, Gluer CC (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3(1):1–7PubMedCrossRef
2.
go back to reference Bauer DC, Glüer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157(6):629–634PubMedCrossRef Bauer DC, Glüer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157(6):629–634PubMedCrossRef
3.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMed Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMed
4.
go back to reference Bossy E, Talmant M, Laugier P (2002) Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J Acoust Soc Am 112(1):297–307PubMedCrossRef Bossy E, Talmant M, Laugier P (2002) Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J Acoust Soc Am 112(1):297–307PubMedCrossRef
5.
go back to reference Bossy E, Talmant M, Laugier P (2004) Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 115(5 Pt 1):2314–2324PubMedCrossRef Bossy E, Talmant M, Laugier P (2004) Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models. J Acoust Soc Am 115(5 Pt 1):2314–2324PubMedCrossRef
6.
go back to reference Bossy E, Talmant M, Defontaine M, Patat F, Laugier P (2004) Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. IEEE Trans Ultrason Ferroelectr Freq Control 51(1):71–79PubMedCrossRef Bossy E, Talmant M, Defontaine M, Patat F, Laugier P (2004) Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials. IEEE Trans Ultrason Ferroelectr Freq Control 51(1):71–79PubMedCrossRef
7.
go back to reference Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556PubMedCrossRef Bossy E, Talmant M, Peyrin F, Akrout L, Cloetens P, Laugier P (2004) An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity. J Bone Miner Res 19(9):1548–1556PubMedCrossRef
8.
go back to reference Camus E, Talmant M, Berger G, Laugier P (2000) Analysis of the axial transmission technique for the assessment of skeletal status. J Acoust Soc Am 108(6):3058–3065PubMedCrossRef Camus E, Talmant M, Berger G, Laugier P (2000) Analysis of the axial transmission technique for the assessment of skeletal status. J Acoust Soc Am 108(6):3058–3065PubMedCrossRef
9.
go back to reference Foldes AJ, Rimon A, Keinan DD, Popovtzer MM (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17(4):363–367PubMedCrossRef Foldes AJ, Rimon A, Keinan DD, Popovtzer MM (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17(4):363–367PubMedCrossRef
10.
go back to reference Gluer CC (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1524–1528PubMedCrossRef Gluer CC (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1524–1528PubMedCrossRef
11.
go back to reference Guglielmi G, Njeh CF, de Terlizzi F, De Serio DA, Scillitani A, Cammisa M, Fan B, Lu Y, Genant HK (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72(4):469–477PubMedCrossRef Guglielmi G, Njeh CF, de Terlizzi F, De Serio DA, Scillitani A, Cammisa M, Fan B, Lu Y, Genant HK (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72(4):469–477PubMedCrossRef
12.
go back to reference Haïat G, Naili S, Grimal Q, Talmant M, Desceliers C, Soize C (2009) Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J Acoust Soc Am 125(6):4043–4052PubMedCrossRef Haïat G, Naili S, Grimal Q, Talmant M, Desceliers C, Soize C (2009) Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J Acoust Soc Am 125(6):4043–4052PubMedCrossRef
13.
go back to reference Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026):511–514PubMedCrossRef Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026):511–514PubMedCrossRef
14.
go back to reference Hans D, Genton L, Allaoua S, Pichard C, Slosman DO (2003) Hip fracture discrimination study: QUS of the radius and the calcaneum. J Clin Densitom 6(2):163–172PubMedCrossRef Hans D, Genton L, Allaoua S, Pichard C, Slosman DO (2003) Hip fracture discrimination study: QUS of the radius and the calcaneum. J Clin Densitom 6(2):163–172PubMedCrossRef
15.
go back to reference Hartl F, Tyndall A, Kraenzlin M, Bachmeier C, Gückel C, Senn U, Hans D, Theiler R (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study. J Bone Miner Res 17(2):321–330PubMedCrossRef Hartl F, Tyndall A, Kraenzlin M, Bachmeier C, Gückel C, Senn U, Hans D, Theiler R (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study. J Bone Miner Res 17(2):321–330PubMedCrossRef
16.
go back to reference Hollaender R, Hartl F, Krieg M-A, Tyndall A, Geuckel C, Buitrago-Tellez C, Manghani M, Kraenzlin M, Theiler R, Hans D (2009) Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 68:391–396PubMedCrossRef Hollaender R, Hartl F, Krieg M-A, Tyndall A, Geuckel C, Buitrago-Tellez C, Manghani M, Kraenzlin M, Theiler R, Hans D (2009) Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 68:391–396PubMedCrossRef
17.
go back to reference Huang C, Ross PD, Yates AJ, Walker RE, Imose K, Emi K, Wasnich RD (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63(5):380–384PubMedCrossRef Huang C, Ross PD, Yates AJ, Walker RE, Imose K, Emi K, Wasnich RD (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63(5):380–384PubMedCrossRef
18.
go back to reference Knapp KM, Blake GM, Spector TD, Fogelman I (2004) Can the WHO definition of osteoporosis be applied to multi-site axial transmission quantitative ultrasound? Osteoporos Int 15(5):367–374PubMedCrossRef Knapp KM, Blake GM, Spector TD, Fogelman I (2004) Can the WHO definition of osteoporosis be applied to multi-site axial transmission quantitative ultrasound? Osteoporos Int 15(5):367–374PubMedCrossRef
19.
go back to reference Lee SC, Coan BS, Bouxsein ML (1997) Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone 21(1):119–125PubMedCrossRef Lee SC, Coan BS, Bouxsein ML (1997) Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone 21(1):119–125PubMedCrossRef
20.
go back to reference Lowet G, Van der Perre G (1998) Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation. Ultrasonics 36:147–154CrossRef Lowet G, Van der Perre G (1998) Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation. Ultrasonics 36:147–154CrossRef
21.
go back to reference Moayyeri A, Kaptoge S, Dalzell N, Binghan S, Luben RN, Wareham NJ, Reeve J, Khaw KL (2009) Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 24(7):1319–1325PubMedCrossRef Moayyeri A, Kaptoge S, Dalzell N, Binghan S, Luben RN, Wareham NJ, Reeve J, Khaw KL (2009) Is QUS or DXA better for predicting the 10-year absolute risk of fracture? J Bone Miner Res 24(7):1319–1325PubMedCrossRef
22.
go back to reference Moilanen P, Nicholson PH, Kärkkäinen T, Wang Q, Timonen J, Cheng S (2003) Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int 14(12):1020–1027PubMedCrossRef Moilanen P, Nicholson PH, Kärkkäinen T, Wang Q, Timonen J, Cheng S (2003) Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos Int 14(12):1020–1027PubMedCrossRef
23.
go back to reference Moilanen P, Kilappa V, Nicholson PH, Timonen J, Cheng S (2004) Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound Med Biol 30(11):1517–21PubMedCrossRef Moilanen P, Kilappa V, Nicholson PH, Timonen J, Cheng S (2004) Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound Med Biol 30(11):1517–21PubMedCrossRef
24.
go back to reference Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J (2007) Assessment of the cortical bone thickness using ultrasonic guided waves: modeling and in vitro study. Ultrasound Med Biol 33(2):254–262PubMedCrossRef Moilanen P, Nicholson PH, Kilappa V, Cheng S, Timonen J (2007) Assessment of the cortical bone thickness using ultrasonic guided waves: modeling and in vitro study. Ultrasound Med Biol 33(2):254–262PubMedCrossRef
25.
go back to reference Muller M, Moilanen P, Bossy E, Nicholson P, Kilappa V, Timonen J, Talmant M, Cheng S, Laugier P (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31(5):633–642PubMedCrossRef Muller M, Moilanen P, Bossy E, Nicholson P, Kilappa V, Timonen J, Talmant M, Cheng S, Laugier P (2005) Comparison of three ultrasonic axial transmission methods for bone assessment. Ultrasound Med Biol 31(5):633–642PubMedCrossRef
26.
go back to reference Muller M, Mitton D, Moilanen P, Bousson V, Talmant M, Laugier P (2008) Prediction of bone mechanical properties using QUS and pQCT: Study of the human distal radius. Med Eng Phys 30(6):761–767PubMedCrossRef Muller M, Mitton D, Moilanen P, Bousson V, Talmant M, Laugier P (2008) Prediction of bone mechanical properties using QUS and pQCT: Study of the human distal radius. Med Eng Phys 30(6):761–767PubMedCrossRef
27.
go back to reference Määttä M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jämsä T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911PubMedCrossRef Määttä M, Moilanen P, Nicholson P, Cheng S, Timonen J, Jämsä T (2009) Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and BMD in elderly women. Ultrasound Med Biol 35(6):903–911PubMedCrossRef
28.
go back to reference Nguyen TV, Center JR, Eisman JA (2004) Bone mineral density-independent association of quantitative ultrasound measurements and fracture risk in women. Osteoporos Int 15(12):942–947PubMedCrossRef Nguyen TV, Center JR, Eisman JA (2004) Bone mineral density-independent association of quantitative ultrasound measurements and fracture risk in women. Osteoporos Int 15(12):942–947PubMedCrossRef
29.
go back to reference Nicholson PHF, Moilanen P, Kärkkäinen T, Timonen J, Cheng S (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23:755–768PubMedCrossRef Nicholson PHF, Moilanen P, Kärkkäinen T, Timonen J, Cheng S (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23:755–768PubMedCrossRef
30.
go back to reference Nicholson PHF (2008) Ultrasound and the biomechanical competence of bone. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1539–1545PubMedCrossRef Nicholson PHF (2008) Ultrasound and the biomechanical competence of bone. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1539–1545PubMedCrossRef
31.
go back to reference Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21(9):651–659PubMedCrossRef Njeh CF, Hans D, Wu C, Kantorovich E, Sister M, Fuerst T, Genant HK (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21(9):651–659PubMedCrossRef
32.
go back to reference Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, McClung M, Drake WM, Genant HK (2001) Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol 27(10):1337–1345PubMedCrossRef Njeh CF, Saeed I, Grigorian M, Kendler DL, Fan B, Shepherd J, McClung M, Drake WM, Genant HK (2001) Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol 27(10):1337–1345PubMedCrossRef
33.
go back to reference Pham T-L, Talmant M, Laugier P (2008) How does ultrasound bidirectional axial transmission reflect geometry of long bones? IEEE International Ultrasonics Symposium Proceedings 229–232 Pham T-L, Talmant M, Laugier P (2008) How does ultrasound bidirectional axial transmission reflect geometry of long bones? IEEE International Ultrasonics Symposium Proceedings 229–232
34.
go back to reference Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12(1):28–34PubMedCrossRef Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M, Srivastav S, Genant HK (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12(1):28–34PubMedCrossRef
35.
go back to reference Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31(9):1225–1235PubMedCrossRef Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31(9):1225–1235PubMedCrossRef
36.
go back to reference Raum K, Cleveland RO, Peyrin F, Laugier P (2006) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758PubMedCrossRef Raum K, Cleveland RO, Peyrin F, Laugier P (2006) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758PubMedCrossRef
37.
go back to reference Sievänen H, Cheng S, Ollikainen S, Uusi-Rasi K (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12(5):399–405PubMedCrossRef Sievänen H, Cheng S, Ollikainen S, Uusi-Rasi K (2001) Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12(5):399–405PubMedCrossRef
38.
go back to reference Snedecor GW (1976) Statistical methods, 6th edn. The Iowa State University Press, Ames, Iowa, USA Snedecor GW (1976) Statistical methods, 6th edn. The Iowa State University Press, Ames, Iowa, USA
39.
go back to reference Stegman M, Heaney R, Travers-Gustafson D, Leist J (1995) Cortical ultrasound velocity as an indicator of bone status. Osteoporos Int 5:349–353PubMedCrossRef Stegman M, Heaney R, Travers-Gustafson D, Leist J (1995) Cortical ultrasound velocity as an indicator of bone status. Osteoporos Int 5:349–353PubMedCrossRef
40.
go back to reference Ta D, Wang W, Wang Y, Le LH, Zhou Y (2009) Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound Med Biol 35(4):641–652PubMedCrossRef Ta D, Wang W, Wang Y, Le LH, Zhou Y (2009) Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. Ultrasound Med Biol 35(4):641–652PubMedCrossRef
41.
go back to reference Talmant M, Kolta S, Roux Ch, Haguenauer D, Vedel I, Cassou B, Bossy E, Laugier P (2008) In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol 35(6):912–919CrossRef Talmant M, Kolta S, Roux Ch, Haguenauer D, Vedel I, Cassou B, Bossy E, Laugier P (2008) In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. Ultrasound Med Biol 35(6):912–919CrossRef
42.
go back to reference Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8):672–680PubMedCrossRef Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8):672–680PubMedCrossRef
43.
go back to reference Wang Q, Nicholson PHF, Timonen J, Alen M, Moilanen P, Suominen H, Cheng S (2008) Monitoring bone growth using quantitative ultrasound in comparison with DXA and pQCT. J Clin Densitom 11(2):295–301PubMedCrossRef Wang Q, Nicholson PHF, Timonen J, Alen M, Moilanen P, Suominen H, Cheng S (2008) Monitoring bone growth using quantitative ultrasound in comparison with DXA and pQCT. J Clin Densitom 11(2):295–301PubMedCrossRef
44.
go back to reference Weiss M, Ben-Shlomo AB, Hagag P, Rapoport M (2000) Reference database for bone speed of sound measurement by a novel quantitative multi-site ultrasound device. Osteoporos Int 11(8):688–696PubMedCrossRef Weiss M, Ben-Shlomo AB, Hagag P, Rapoport M (2000) Reference database for bone speed of sound measurement by a novel quantitative multi-site ultrasound device. Osteoporos Int 11(8):688–696PubMedCrossRef
45.
go back to reference Wüster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Glüer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15(8):1603–1614PubMedCrossRef Wüster C, Albanese C, De Aloysio D, Duboeuf F, Gambacciani M, Gonnelli S, Glüer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15(8):1603–1614PubMedCrossRef
46.
go back to reference Xu L, Nicholson PHF, Wang Q, Alen M, Cheng S (2009) Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res 24(10):1693–1698PubMedCrossRef Xu L, Nicholson PHF, Wang Q, Alen M, Cheng S (2009) Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res 24(10):1693–1698PubMedCrossRef
47.
go back to reference Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22(1):57–6PubMedCrossRef Zioupos P, Currey JD (1998) Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22(1):57–6PubMedCrossRef
Metadata
Title
Low-frequency axial ultrasound velocity correlates with bone mineral density and cortical thickness in the radius and tibia in pre- and postmenopausal women
Authors
V. Kilappa
P. Moilanen
L. Xu
P. H. F. Nicholson
J. Timonen
S. Cheng
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 4/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1273-7

Other articles of this Issue 4/2011

Osteoporosis International 4/2011 Go to the issue