Skip to main content
Top
Published in: Journal of Occupational Medicine and Toxicology 1/2020

01-12-2020 | Research

Ultrafine particles in scanning sprays: a standardized examination of five powders used for dental reconstruction

Authors: E. Ochsmann, P. Brand, T. Kraus, S. Reich

Published in: Journal of Occupational Medicine and Toxicology | Issue 1/2020

Login to get access

Abstract

Background

Intraoral matting sprays for chairside systems can release fine or ultrafine particles or nanoparticles at dentists’ workplaces and cause work-related health problems by inhalation exposure. Until now, little is known about the magnitude of the ultrafine fraction, when using these scanning sprays. Hence, more information is needed for workplace risk assessments in dental practices.

Methods

Five commonly used dental spray-powders were examined under standardized conditions. Ingredients were taken from the respective safety data sheet. Particle number-size distributions and total number concentrations were analyzed with a fast mobility particle sizer, and reported graphically as well as mean particle fractions smaller than 100 nm. Based on these measurements, risk assessments were conducted, and particle depositions in the lung were modelled.

Results

The mean fraction of particles smaller than 100 nm varied between 9 and 93% depending on the matting agent and mode of application of the intraoral scanning spray. Propellants can represent a large fraction of these particles. Titanium dioxide, pigment-suspensions, talcum and others particles, which can pose relevant health risks, were listed as ingredients of scanning sprays in safety data sheets. Nevertheless, the deposited fraction of hazardous particles in the lung of employees in dental practices seems to be small (15%) during this dental procedure.

Conclusions

Our results suggest that dentists’ personnel can be exposed to hazardous fine and ultrafine particles. Though extensive standardized measurements and systematic evaluation of safety data sheets were used for this study, they cannot sufficiently assess and categorize potential workplace-related health risks.
Literature
1.
go back to reference Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofacial Res. 2018;8(1):58–67.CrossRef Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. J Oral Biol Craniofacial Res. 2018;8(1):58–67.CrossRef
2.
go back to reference FIDE (European dental industry). Nanomaterials in dental materials: the position of the dental industry. 2018. FIDE (European dental industry). Nanomaterials in dental materials: the position of the dental industry. 2018.
3.
go back to reference Mörmann WH. The Evolution of the CEEREC System. J Am Dent Assoc. 2006;137:7S-13S. Mörmann WH. The Evolution of the CEEREC System. J Am Dent Assoc. 2006;137:7S-13S.
4.
go back to reference Zaruba M, Mehl A. Chairside systems: a current review. Int J Comput Dent. 2017;20(2):123–49.PubMed Zaruba M, Mehl A. Chairside systems: a current review. Int J Comput Dent. 2017;20(2):123–49.PubMed
5.
go back to reference Logozzo S, Franceschini G, Kilpelӓ A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Technol. 2011;5(1):1–2. Logozzo S, Franceschini G, Kilpelӓ A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Technol. 2011;5(1):1–2.
6.
go back to reference Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–29.PubMed Zimmermann M, Mehl A, Mörmann WH, Reich S. Intraoral scanning systems - a current overview. Int J Comput Dent. 2015;18(2):101–29.PubMed
7.
go back to reference Kurbad A. The optical conditioning of Cerec preparations with scan spray. Int J Comput Dent. 2000;3:269–79.PubMed Kurbad A. The optical conditioning of Cerec preparations with scan spray. Int J Comput Dent. 2000;3:269–79.PubMed
8.
go back to reference Richert R, Goujat A, Venet L, Viguie G, Viennot V, Robinson P, Farges JC, Fages M, Ducret M. Intraoral scanner technologies: a review to make a successful impression. J Healthc Eng. 2017;2017:8427595 9 pages.PubMedPubMedCentralCrossRef Richert R, Goujat A, Venet L, Viguie G, Viennot V, Robinson P, Farges JC, Fages M, Ducret M. Intraoral scanner technologies: a review to make a successful impression. J Healthc Eng. 2017;2017:8427595 9 pages.PubMedPubMedCentralCrossRef
9.
go back to reference Rupf S, Berger H, Buchter A, Harth V, Ong MF, Hannig M. Exposure of patient and dental staff to fine and ultrafine particles from scanning spray. Clin Oral Invest. 2015;19:823–30.CrossRef Rupf S, Berger H, Buchter A, Harth V, Ong MF, Hannig M. Exposure of patient and dental staff to fine and ultrafine particles from scanning spray. Clin Oral Invest. 2015;19:823–30.CrossRef
10.
go back to reference Nazarenko Y, Han TW, Lioy PJ, Mainelis G. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J Exposure Sci Environ Epidemiol. 2011;21:515–28.CrossRef Nazarenko Y, Han TW, Lioy PJ, Mainelis G. Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products. J Exposure Sci Environ Epidemiol. 2011;21:515–28.CrossRef
11.
go back to reference Mauro M, Crosera M, Bianco C, Bellomo F, Bovenzi M, Adami G, Filon FL. In vitro permeability of silver nanoparticles through porcine oromucosal membrane. Colloids Surf B Biointerfaces. 2015;132:10–6.PubMedCrossRef Mauro M, Crosera M, Bianco C, Bellomo F, Bovenzi M, Adami G, Filon FL. In vitro permeability of silver nanoparticles through porcine oromucosal membrane. Colloids Surf B Biointerfaces. 2015;132:10–6.PubMedCrossRef
12.
go back to reference Mauro M, Crosera M, Bovenzi M, Adami G, Filon FL. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane. Colloids Surf B Biointerfaces. 2016;143:245–9.CrossRef Mauro M, Crosera M, Bovenzi M, Adami G, Filon FL. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane. Colloids Surf B Biointerfaces. 2016;143:245–9.CrossRef
13.
go back to reference Ostiguy C, Soucy B, Lapoint G, Woods C, Menard L, Trottier M. Health effects of nanoparticles. IRSST (ed). 2008. ISSN: 0820-8395. Ostiguy C, Soucy B, Lapoint G, Woods C, Menard L, Trottier M. Health effects of nanoparticles. IRSST (ed). 2008. ISSN: 0820-8395.
14.
go back to reference Osman IF, Jakob BK, Anderson D. Effect of nanoparticles on human cells from healthy individuals and patients with respiratory diseases. J Biomed Nanotechnol. 2011;7:26–7.PubMedCrossRef Osman IF, Jakob BK, Anderson D. Effect of nanoparticles on human cells from healthy individuals and patients with respiratory diseases. J Biomed Nanotechnol. 2011;7:26–7.PubMedCrossRef
15.
go back to reference Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled titanium oxide. Eur Resp J. 2005;25:200–4.CrossRef Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled titanium oxide. Eur Resp J. 2005;25:200–4.CrossRef
16.
go back to reference Kotter JM, Zieger G. Sarcoid granulomatosis after many years of exposure to zirconium, “zirconium lung”. Pathologe. 1992;13:104–9.PubMed Kotter JM, Zieger G. Sarcoid granulomatosis after many years of exposure to zirconium, “zirconium lung”. Pathologe. 1992;13:104–9.PubMed
17.
go back to reference Bair WJ. Overview of ICRP respiratory tract model. Radiat Prot Dosim. 1991;38:147–52.CrossRef Bair WJ. Overview of ICRP respiratory tract model. Radiat Prot Dosim. 1991;38:147–52.CrossRef
18.
go back to reference Kuo YM, Huang SH, Shih TS, Chen CC, Weng YM, Lin WY. Development of a size-selective inlet-simulation ICRP lung deposition fraction. Aerosol Sci Technol. 2005;39:437–43.CrossRef Kuo YM, Huang SH, Shih TS, Chen CC, Weng YM, Lin WY. Development of a size-selective inlet-simulation ICRP lung deposition fraction. Aerosol Sci Technol. 2005;39:437–43.CrossRef
19.
go back to reference Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedPubMedCentralCrossRef Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedPubMedCentralCrossRef
21.
go back to reference Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 2008;17:438–47.PubMedCrossRef Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 2008;17:438–47.PubMedCrossRef
22.
go back to reference Leggat PA, Kedjarune U, Smith DR. Occupational health problems in modern dentistry: a review. Ind Health. 2007;45:611–21.PubMedCrossRef Leggat PA, Kedjarune U, Smith DR. Occupational health problems in modern dentistry: a review. Ind Health. 2007;45:611–21.PubMedCrossRef
23.
go back to reference Van Duuren-Stuurman B, Vink SR, Verbist KJM, Heussen HGA, Brouwer DH, Kroese DED, van Niftrik MFJ, Tielemans E, Fransman W. Stoffenmanager Nano Version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg. 2012:1–17. Van Duuren-Stuurman B, Vink SR, Verbist KJM, Heussen HGA, Brouwer DH, Kroese DED, van Niftrik MFJ, Tielemans E, Fransman W. Stoffenmanager Nano Version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg. 2012:1–17.
24.
go back to reference Brand P, Lenz K, Reisgen U, Kraus T. Number size distribution of fine and ultrafine fume particles from various welding processes. Ann Occup Hyg. 2013;57(3):305–13.PubMed Brand P, Lenz K, Reisgen U, Kraus T. Number size distribution of fine and ultrafine fume particles from various welding processes. Ann Occup Hyg. 2013;57(3):305–13.PubMed
26.
go back to reference Leskinen J, Joutsensaari J, Lyyränen J, Koivisto J, Ruusunen J, Järvela M, et al. Comparison of nanoparticle measurement instruments for occupational health applications. J Nanopart Res. 2012;14:718.CrossRef Leskinen J, Joutsensaari J, Lyyränen J, Koivisto J, Ruusunen J, Järvela M, et al. Comparison of nanoparticle measurement instruments for occupational health applications. J Nanopart Res. 2012;14:718.CrossRef
27.
go back to reference Jeonga C-H, Evansa GJ. Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Tech. 2009;43:364–73.CrossRef Jeonga C-H, Evansa GJ. Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Tech. 2009;43:364–73.CrossRef
28.
go back to reference Ashgarian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol. 2001;34:332–9.CrossRef Ashgarian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol. 2001;34:332–9.CrossRef
29.
go back to reference Vu TV, Ondracek J, Zdimal V, Schwarz J, Delgado-Saborit JM, Harrison RM. Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual Atmos Health. 2017;10:1–14.PubMedCrossRef Vu TV, Ondracek J, Zdimal V, Schwarz J, Delgado-Saborit JM, Harrison RM. Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual Atmos Health. 2017;10:1–14.PubMedCrossRef
31.
go back to reference Hertel S, Viehmann A, Moebus S, Mann K, Bröcker-Preuss M, Möhlenkamp S, et al. Influence of short-term exposure to ultrafine and fine particles on systemic inflammation. Eur J Epidemiol. 2010;25:581–92.PubMedCrossRef Hertel S, Viehmann A, Moebus S, Mann K, Bröcker-Preuss M, Möhlenkamp S, et al. Influence of short-term exposure to ultrafine and fine particles on systemic inflammation. Eur J Epidemiol. 2010;25:581–92.PubMedCrossRef
32.
go back to reference Madl AK, Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol. 2009;39:629–58.PubMedCrossRef Madl AK, Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol. 2009;39:629–58.PubMedCrossRef
33.
go back to reference Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal Toxicol. 2000;12:1089–111.PubMedCrossRef Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal Toxicol. 2000;12:1089–111.PubMedCrossRef
34.
go back to reference Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particles surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–26.PubMedCrossRef Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particles surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–26.PubMedCrossRef
35.
go back to reference Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92:174–85.PubMedCrossRef Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92:174–85.PubMedCrossRef
36.
go back to reference Warheit DB, Webb TR, Reed KL. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silsica. Part Fibre Toxicol. 2006a;3:3–12.PubMedPubMedCentralCrossRef Warheit DB, Webb TR, Reed KL. Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silsica. Part Fibre Toxicol. 2006a;3:3–12.PubMedPubMedCentralCrossRef
37.
go back to reference Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary istillation studes with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon paricle size and surface area. Toxicol Sci. 2006b;91:227–36.PubMedCrossRef Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary istillation studes with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon paricle size and surface area. Toxicol Sci. 2006b;91:227–36.PubMedCrossRef
38.
go back to reference Bramming Jorgensen R, Buhagen M, Foreland S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med. 2016;73:467–73.CrossRef Bramming Jorgensen R, Buhagen M, Foreland S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med. 2016;73:467–73.CrossRef
39.
go back to reference Chen BT, Schwegler-Berry D, Cumpston A, Cumpston J, Friend S, Stone S, Keane M. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: multi-walled carbon nanotubes, welding fumes and titanium-dioxide spray. J Occup Environ Hyg. 2016;13(7):501–18.PubMedPubMedCentralCrossRef Chen BT, Schwegler-Berry D, Cumpston A, Cumpston J, Friend S, Stone S, Keane M. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: multi-walled carbon nanotubes, welding fumes and titanium-dioxide spray. J Occup Environ Hyg. 2016;13(7):501–18.PubMedPubMedCentralCrossRef
40.
go back to reference Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, Blot WJ. A cohort mortality study among titaniumdioxide manufacturing workers in the United States. J Occup Environ Med. 2003;45:400–9.PubMedCrossRef Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, Blot WJ. A cohort mortality study among titaniumdioxide manufacturing workers in the United States. J Occup Environ Med. 2003;45:400–9.PubMedCrossRef
41.
go back to reference Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug SJ, Langard S, Luce D, Merletti F, Miller B, Mirabelli D, Pukkala E, Adami HO, Weiderpass E. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control. 2004;15:697–706.PubMedCrossRef Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug SJ, Langard S, Luce D, Merletti F, Miller B, Mirabelli D, Pukkala E, Adami HO, Weiderpass E. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control. 2004;15:697–706.PubMedCrossRef
42.
go back to reference Yang Y, Mao P, Xu C, Chen S, Zhang J, Wang Z. Distribution characteristics of nano-TiO2 aerosol in the workplace. Aerosol Air Quality Res. 2011;11:466–72.CrossRef Yang Y, Mao P, Xu C, Chen S, Zhang J, Wang Z. Distribution characteristics of nano-TiO2 aerosol in the workplace. Aerosol Air Quality Res. 2011;11:466–72.CrossRef
43.
go back to reference Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis PJ. Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perspect. 2012;120:885–92.PubMedPubMedCentralCrossRef Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis PJ. Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perspect. 2012;120:885–92.PubMedPubMedCentralCrossRef
Metadata
Title
Ultrafine particles in scanning sprays: a standardized examination of five powders used for dental reconstruction
Authors
E. Ochsmann
P. Brand
T. Kraus
S. Reich
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Occupational Medicine and Toxicology / Issue 1/2020
Electronic ISSN: 1745-6673
DOI
https://doi.org/10.1186/s12995-020-00271-2

Other articles of this Issue 1/2020

Journal of Occupational Medicine and Toxicology 1/2020 Go to the issue