Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Ulcerative Colitis | Research

Exploring the mechanism of the Fructus Mume and Rhizoma Coptidis herb pair intervention in Ulcerative Colitis from the perspective of inflammation and immunity based on systemic pharmacology

Authors: Yatian Yang, Chengcheng Qian, Rui Wu, Rui Wang, Jinmei Ou, Shoujin Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Purpose

Ulcerative Colitis (UC) is a chronic nonspecific inflammatory disease of the colon and rectum. Fructus Mume (FM) and Rhizoma Coptidis (RC) exert effects on inflammatory and immune diseases. We evaluated the hypothesis of the FM and RC (FM-RC) herb pair remedy in alleviating dextran sulfate sodium (DSS)-induced colitis, through network pharmacology-based analyses, molecular docking, and experimental validation.

Methods

The Traditional Chinese medicine systematic pharmacology analysis platform(TCMSP) and Swiss database were used to predict potential targets of FM-RC and the GeneCards database was utilized to collect UC genes. Cytoscape software was used to construct and analyze the networks, and DAVID was utilized to perform enrichment analysis. AutoDock software was used to dock the core chemical components of the FM-RC herb pair with key UC targets. Animal experiments were performed to validate the prediction results and general conditions and body weight were observed. Pathological changes in colon tissue were observed by staining with hematoxylin and eosin. The levels of TNF-α, IL-8, IL-17, and IL-4 in serum and colon tissue were detected by ELISA.

Results

Eighteen effective components of the herb couple were screened, and their potential therapeutic targets in the treatment of UC were acquired from 110 overlapped targets. GO and KEGG analyses revealed that these targets were highly correlated with protein autophosphorylation, plasma membrane, ATP binding, cancer pathways, the PI3K-AKt signaling pathway, and the Rap1 signaling pathway. Molecular docking established the core protein interactions with compounds having a docking energy < 0 kJ·mol−1, indicating the core active components had strong binding activities with the core targets. FM-RC herb pair relieved pathological indicators and reduced the concentration of TNF-α, IL-8, and IL-17 and increased IL-4 levels in the serum and colon tissues of UC rats.

Conclusion

Collectively, FM-RC herb pair administration alleviated UC. These beneficial effects targeted MAPK1 signaling related to inflammation and immunity, which provided a basis for a better understanding of FM-RC in the treatment of UC.
Literature
1.
go back to reference Liu JQ, Liu J, Tong XL, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255–76.CrossRef Liu JQ, Liu J, Tong XL, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huai Hua San against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255–76.CrossRef
2.
go back to reference Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018;30(1):1–10.CrossRef Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018;30(1):1–10.CrossRef
3.
go back to reference Yamamoto-Furusho JK, Parra-Holguín NN. Emerging therapeutic options in inflammatory bowel disease. World J Gastroenterol. 2021;27(48):8242–61.CrossRef Yamamoto-Furusho JK, Parra-Holguín NN. Emerging therapeutic options in inflammatory bowel disease. World J Gastroenterol. 2021;27(48):8242–61.CrossRef
4.
go back to reference Laurain PA, Guillo L, D’Amico F, et al. Incidence of and risk factors for colorectal strictures in ulcerative colitis: a multicenter study. Clin Gastroenterol H. 2021;19(9):1899.CrossRef Laurain PA, Guillo L, D’Amico F, et al. Incidence of and risk factors for colorectal strictures in ulcerative colitis: a multicenter study. Clin Gastroenterol H. 2021;19(9):1899.CrossRef
5.
go back to reference Le CG, Buscail E, Gilletta C, et al. Incidence and risk factors of cancer in the anal transitional zone and Ileal pouch following surgery for ulcerative colitis and familial adenomatous polyposis. Cancers. 2022;14(3):530.CrossRef Le CG, Buscail E, Gilletta C, et al. Incidence and risk factors of cancer in the anal transitional zone and Ileal pouch following surgery for ulcerative colitis and familial adenomatous polyposis. Cancers. 2022;14(3):530.CrossRef
6.
go back to reference Sałaga M, Zatorski H, Sobczak M, et al. Chinese herbal medicines in the treatment of IBD and colorectal cancer: a review. Curr Treat Option On. 2014;15(3):405–20.CrossRef Sałaga M, Zatorski H, Sobczak M, et al. Chinese herbal medicines in the treatment of IBD and colorectal cancer: a review. Curr Treat Option On. 2014;15(3):405–20.CrossRef
7.
go back to reference Xueping Y, Fuer L, Lingli L, et al. Wu-Mei-wan protects pancreatic β cells by inhibiting NLRP3 Inflammasome activation in diabetic mice. BMC Complementary Altern Med. 2019;19(1):1–12. Xueping Y, Fuer L, Lingli L, et al. Wu-Mei-wan protects pancreatic β cells by inhibiting NLRP3 Inflammasome activation in diabetic mice. BMC Complementary Altern Med. 2019;19(1):1–12.
8.
go back to reference Xiaojie D, Xiling S, Xiaofei Y, et al. The effects of wumei pill on intestinal flora and neurotransmitters in rats with diarrhea-predominant irritable bowel syndrome (IBS-D). AIP Conf Proc. 2019;2079(1):020028. Xiaojie D, Xiling S, Xiaofei Y, et al. The effects of wumei pill on intestinal flora and neurotransmitters in rats with diarrhea-predominant irritable bowel syndrome (IBS-D). AIP Conf Proc. 2019;2079(1):020028.
9.
go back to reference Feng J, Minghao L, Haidan W, et al. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed Pharmacother. 2020;125(C):109982. Feng J, Minghao L, Haidan W, et al. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-kB/IL6-STAT3 signaling pathway. Biomed Pharmacother. 2020;125(C):109982.
10.
go back to reference Ding XJ, Sun XL, Wang ZE, et al. The Effects of Wumei Pill on TLRs/NF-kB signaling pathway in rats with diarrhea-predominant irritable bowel syndrome. Pak J Zool. 2018;51(1):57–65. Ding XJ, Sun XL, Wang ZE, et al. The Effects of Wumei Pill on TLRs/NF-kB signaling pathway in rats with diarrhea-predominant irritable bowel syndrome. Pak J Zool. 2018;51(1):57–65.
11.
go back to reference Wang Q, Liu SL, Yan SH, et al. Effect of the Wumei Huanglian Fang on HT29 proliferation and migration of human colon cancer cell. J Nanjing Univ Chin Med. 2014;30(6):538–41. Wang Q, Liu SL, Yan SH, et al. Effect of the Wumei Huanglian Fang on HT29 proliferation and migration of human colon cancer cell. J Nanjing Univ Chin Med. 2014;30(6):538–41.
12.
go back to reference Zhu HX, Wang Q, Liu SL, et al. Experimental study on anti-proliferation effect of Wumei Huanglian Compound on human colon cancer cell line Lovo and HT29. J Chin Med. 2013;31(11):2346–8. Zhu HX, Wang Q, Liu SL, et al. Experimental study on anti-proliferation effect of Wumei Huanglian Compound on human colon cancer cell line Lovo and HT29. J Chin Med. 2013;31(11):2346–8.
13.
go back to reference Wang R, Cheng H, Yang YT, et al. Ultra-performance liquid chromatography-quadrupole-time of flight tandem-mass spectrometry and liquid chromatograph-tandem mass spectrometer combined with chemometric analysis an approach for the quality evaluation of Mume Fructus. J Sep Sci. 2022;45(11):1884–93.CrossRef Wang R, Cheng H, Yang YT, et al. Ultra-performance liquid chromatography-quadrupole-time of flight tandem-mass spectrometry and liquid chromatograph-tandem mass spectrometer combined with chemometric analysis an approach for the quality evaluation of Mume Fructus. J Sep Sci. 2022;45(11):1884–93.CrossRef
14.
go back to reference Wang J, Wang L, Lou GH, et al. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Biol. 2019;57(1):193–225.CrossRef Wang J, Wang L, Lou GH, et al. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Biol. 2019;57(1):193–225.CrossRef
15.
go back to reference Jiang X, Li SS, Zhang B, et al. Study on fingerprint of different compatibility ratio of Rhizoma coptidis-Fructus mume. J Liaoning Univ Chin Med. 2012;14(10):195–7. Jiang X, Li SS, Zhang B, et al. Study on fingerprint of different compatibility ratio of Rhizoma coptidis-Fructus mume. J Liaoning Univ Chin Med. 2012;14(10):195–7.
16.
go back to reference He AM, Wang YL, Lin SM. The effect of Fructus Mume decoction on rat with experimental ulcerative colitis. J Pharm Pract. 2012;30(05):357–60. He AM, Wang YL, Lin SM. The effect of Fructus Mume decoction on rat with experimental ulcerative colitis. J Pharm Pract. 2012;30(05):357–60.
17.
go back to reference Li TL, Wu MZ, Wang LZ, et al. Huang Lian for ulcerative colitis A protocol of systematic review and meta-analysis of randomized clinical trials. Medicine. 2020;99(40):e22457.CrossRef Li TL, Wu MZ, Wang LZ, et al. Huang Lian for ulcerative colitis A protocol of systematic review and meta-analysis of randomized clinical trials. Medicine. 2020;99(40):e22457.CrossRef
18.
go back to reference Du YK, Xiao Y, Zhong SM, et al. Study on the mechanism of Acori Graminei Rhizoma in the treatment of Alzheimer’s Disease based on network pharmacology and molecular docking. Biomed Res Int. 2021;2021:5418142.CrossRef Du YK, Xiao Y, Zhong SM, et al. Study on the mechanism of Acori Graminei Rhizoma in the treatment of Alzheimer’s Disease based on network pharmacology and molecular docking. Biomed Res Int. 2021;2021:5418142.CrossRef
19.
go back to reference Jia GF, Jiang XX, Li ZQ, et al. Decoding the mechanism of Shen Qi Sha Bai decoction in treating acute myeloid leukemia based on network pharmacology and molecular docking. Front Cell Dev Biol. 2021;9:796757.CrossRef Jia GF, Jiang XX, Li ZQ, et al. Decoding the mechanism of Shen Qi Sha Bai decoction in treating acute myeloid leukemia based on network pharmacology and molecular docking. Front Cell Dev Biol. 2021;9:796757.CrossRef
20.
go back to reference Zhou MF, Li JX, Luo D, et al. Network pharmacology and molecular docking-based investigation: Prunus mume against colorectal cancer via silencing RelA expression. Front Pharmacol. 2021;12:761980.CrossRef Zhou MF, Li JX, Luo D, et al. Network pharmacology and molecular docking-based investigation: Prunus mume against colorectal cancer via silencing RelA expression. Front Pharmacol. 2021;12:761980.CrossRef
21.
go back to reference An WR, Huang YQ, Chen SQ, et al. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci Rep. 2021;11(1):20849.CrossRef An WR, Huang YQ, Chen SQ, et al. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci Rep. 2021;11(1):20849.CrossRef
22.
go back to reference Yang LN, Wu ZL, Yang ZJ, et al. Exploring mechanism of key Chinese herbal medicine on breast cancer by data mining and network pharmacology methods. Chin J Integr Med. 2021;27(12):919–26.CrossRef Yang LN, Wu ZL, Yang ZJ, et al. Exploring mechanism of key Chinese herbal medicine on breast cancer by data mining and network pharmacology methods. Chin J Integr Med. 2021;27(12):919–26.CrossRef
23.
go back to reference Wei Z, Huang LM. Potential mechanism of Danggui Buxue decoction in treating iron deficiency anemia based on network pharmacology and molecular docking technology. Med Plant. 2021;12(06):33–6. Wei Z, Huang LM. Potential mechanism of Danggui Buxue decoction in treating iron deficiency anemia based on network pharmacology and molecular docking technology. Med Plant. 2021;12(06):33–6.
24.
go back to reference Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.CrossRef Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110–20.CrossRef
25.
go back to reference Liu SX, et al. Uncovering the Mechanism of curcuma in the treatment of ulcerative colitis based on network pharmacology, molecular docking technology, and experiment verification. Evid Based Complement Alternat Med. 2021;2021:6629761. Liu SX, et al. Uncovering the Mechanism of curcuma in the treatment of ulcerative colitis based on network pharmacology, molecular docking technology, and experiment verification. Evid Based Complement Alternat Med. 2021;2021:6629761.
26.
go back to reference Paolacci S, Precone V, Acquaviva F, et al. Genetics of lipedema:new perspectives on genetic research and molecular diagnoses. Eur Rev Med Pharmacol Sci. 2019;23(13):5581–94. Paolacci S, Precone V, Acquaviva F, et al. Genetics of lipedema:new perspectives on genetic research and molecular diagnoses. Eur Rev Med Pharmacol Sci. 2019;23(13):5581–94.
27.
go back to reference Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat commun. 2019;10(1):1523.CrossRef Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat commun. 2019;10(1):1523.CrossRef
28.
go back to reference Liu ZH, Peng Y, Ma P, et al. An integrated strategy for anti-inflammatory quality markers screening of traditional Chinese herbal medicine Mume Fructus based on phytochemical analysis and anti-colitis activity. Phytomedicine. 2022;99(prepublish):154002.CrossRef Liu ZH, Peng Y, Ma P, et al. An integrated strategy for anti-inflammatory quality markers screening of traditional Chinese herbal medicine Mume Fructus based on phytochemical analysis and anti-colitis activity. Phytomedicine. 2022;99(prepublish):154002.CrossRef
29.
go back to reference Niu SQ, Jing MY, Wen JX, et al. Jatrorrhizine Alleviates DSS-induced ulcerative colitis by regulating the intestinal barrier function and inhibiting TLR4/MyD88/NF-κB signaling pathway. Evid Based Complement Alternat Med. 2022;2022:3498310–3498310.CrossRef Niu SQ, Jing MY, Wen JX, et al. Jatrorrhizine Alleviates DSS-induced ulcerative colitis by regulating the intestinal barrier function and inhibiting TLR4/MyD88/NF-κB signaling pathway. Evid Based Complement Alternat Med. 2022;2022:3498310–3498310.CrossRef
30.
go back to reference Chu TM, Mei MW, Chun LW, et al. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol Immunol. 2019;105:76–85.CrossRef Chu TM, Mei MW, Chun LW, et al. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol Immunol. 2019;105:76–85.CrossRef
31.
go back to reference Zheng C, Wang YM, Xu YJ, et al. Berberine inhibits dendritic cells differentiation in DSS-induced colitis by promoting Bacteroides fragilis. Int Immunopharmacol. 2021;101(PA):108329–108329.CrossRef Zheng C, Wang YM, Xu YJ, et al. Berberine inhibits dendritic cells differentiation in DSS-induced colitis by promoting Bacteroides fragilis. Int Immunopharmacol. 2021;101(PA):108329–108329.CrossRef
32.
go back to reference Yi H, Peng HY, Wu XY, et al. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxid Med Cell Longev. 2021;2021:6678662.CrossRef Yi H, Peng HY, Wu XY, et al. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxid Med Cell Longev. 2021;2021:6678662.CrossRef
33.
go back to reference Ye XL, Zheng YZ, Qiu ZW, et al. The mechanism of quercetin in the treatment of rheumatoid arthritis. Rheu Arthr. 2021;10(02):47–50+54. Ye XL, Zheng YZ, Qiu ZW, et al. The mechanism of quercetin in the treatment of rheumatoid arthritis. Rheu Arthr. 2021;10(02):47–50+54.
34.
go back to reference Rajendran P, Ammar RB, AlSaeedi FJ, et al. Kaempferol inhibits Zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-Mediated Nrf2 signaling pathway: in vitro and in vivo studies. Int J Mol Sci. 2020;22(1):217.CrossRef Rajendran P, Ammar RB, AlSaeedi FJ, et al. Kaempferol inhibits Zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-Mediated Nrf2 signaling pathway: in vitro and in vivo studies. Int J Mol Sci. 2020;22(1):217.CrossRef
35.
go back to reference Ou RL. The effect and mechanism of kaempferol in chemoprevention of colorectal cancer. Guangzhou Univ Chin Med. 2016;05:1–108. Ou RL. The effect and mechanism of kaempferol in chemoprevention of colorectal cancer. Guangzhou Univ Chin Med. 2016;05:1–108.
36.
go back to reference Zhang S, Yang Z, Bao W, et al. SNX10 (sorting nexin 10)inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy. 2020;16(4):735–49.CrossRef Zhang S, Yang Z, Bao W, et al. SNX10 (sorting nexin 10)inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy. 2020;16(4):735–49.CrossRef
37.
go back to reference Zeng Q, Nie MH. Research progress on the role of Src kinase in tumor invasion and metastasis. J Xinxiang Med Coll. 2021;38(03):293–5+300. Zeng Q, Nie MH. Research progress on the role of Src kinase in tumor invasion and metastasis. J Xinxiang Med Coll. 2021;38(03):293–5+300.
38.
go back to reference Chen Y, Lu S, Zhang Y, et al. TLR2 agonist Pam3CSK4 enhances the antibacterial functions of GM-CSF induced neutrophils to methicillin-resistant staphylococcus aureus. Microb Pathog. 2019;130:204–12.CrossRef Chen Y, Lu S, Zhang Y, et al. TLR2 agonist Pam3CSK4 enhances the antibacterial functions of GM-CSF induced neutrophils to methicillin-resistant staphylococcus aureus. Microb Pathog. 2019;130:204–12.CrossRef
39.
go back to reference Wang J, Zhang H. Research progress on signaling pathways related to the anti-inflammatoryeffect of Annexin A1. Shandong Med. 2020;60(26):102–5. Wang J, Zhang H. Research progress on signaling pathways related to the anti-inflammatoryeffect of Annexin A1. Shandong Med. 2020;60(26):102–5.
40.
go back to reference Lee KM, Bang JH, Kim BY, et al. Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling. BMC Complement Altern Med. 2015;15(1):125.CrossRef Lee KM, Bang JH, Kim BY, et al. Fructus mume alleviates chronic cerebral hypoperfusion-induced white matter and hippocampal damage via inhibition of inflammation and downregulation of TLR4 and p38 MAPK signaling. BMC Complement Altern Med. 2015;15(1):125.CrossRef
41.
go back to reference Bai Y, Wu LL, An JD, et al. Correlation between KRAS, NRAS, BRAF, PIK3CA gene mutations and clinicopathological features and expression of MMR protein and p53 protein in colorectal cancer tissues. J Dign Pathol. 2021;28(03):183–8+193. Bai Y, Wu LL, An JD, et al. Correlation between KRAS, NRAS, BRAF, PIK3CA gene mutations and clinicopathological features and expression of MMR protein and p53 protein in colorectal cancer tissues. J Dign Pathol. 2021;28(03):183–8+193.
42.
go back to reference Zhan JY, Yuan XX, Wang BY, et al. Effects of Liancao Xieli capsule on intestinal mucosal inflammatory factors and TLR4/ PI3K/ Akt/ mTOR signaling pathway in ulcerative colitis mouse model. J Hainan Med Coll. 2021;27(24):1872–7. Zhan JY, Yuan XX, Wang BY, et al. Effects of Liancao Xieli capsule on intestinal mucosal inflammatory factors and TLR4/ PI3K/ Akt/ mTOR signaling pathway in ulcerative colitis mouse model. J Hainan Med Coll. 2021;27(24):1872–7.
43.
go back to reference Zhang RX, Fu YJ, Liang JZ, et al. Berberine in the treatment of immune complex ulcerative colitis and down-regulation of inflammatory cytokines in rats. Clin Med Engin. 2014;189(11):1406–9. Zhang RX, Fu YJ, Liang JZ, et al. Berberine in the treatment of immune complex ulcerative colitis and down-regulation of inflammatory cytokines in rats. Clin Med Engin. 2014;189(11):1406–9.
44.
go back to reference Park JS, Park H, Lee YL, et al. Blocking TNF-α attenuates progressive cartilage matrix degradation in inflammatory arthritis. Exp Ther Med. 2021;22(2):808.CrossRef Park JS, Park H, Lee YL, et al. Blocking TNF-α attenuates progressive cartilage matrix degradation in inflammatory arthritis. Exp Ther Med. 2021;22(2):808.CrossRef
45.
go back to reference Li BL, Zhao DY, Du PL, et al. Effects of Huazhuo Jiedu Fang on serum IL-1β, IL-8 content and expression of NF-κB mRNA in colonic mucosa in rats with ulcerative colitis. J Guangzhou Univ Chin Med. 2019;36(07):1045–9. Li BL, Zhao DY, Du PL, et al. Effects of Huazhuo Jiedu Fang on serum IL-1β, IL-8 content and expression of NF-κB mRNA in colonic mucosa in rats with ulcerative colitis. J Guangzhou Univ Chin Med. 2019;36(07):1045–9.
46.
go back to reference Si XL, Wang Y, Wang Z, et al. Effects of paeoniflorin on the expression of IL-17 in DSS-induced chronic ulcerative colitis in rats. Chin J Immunol. 2021;37(08):946–50. Si XL, Wang Y, Wang Z, et al. Effects of paeoniflorin on the expression of IL-17 in DSS-induced chronic ulcerative colitis in rats. Chin J Immunol. 2021;37(08):946–50.
47.
go back to reference Jiang Y, Zhao L, Chen Q, et al. Exploring the mechanism of Berberine intervention in ulcerative colitis from the perspective of inflammation and immunity based on systemic pharmacology. Evid Based Complement Alternat Med. 2021;2021:9970240.CrossRef Jiang Y, Zhao L, Chen Q, et al. Exploring the mechanism of Berberine intervention in ulcerative colitis from the perspective of inflammation and immunity based on systemic pharmacology. Evid Based Complement Alternat Med. 2021;2021:9970240.CrossRef
Metadata
Title
Exploring the mechanism of the Fructus Mume and Rhizoma Coptidis herb pair intervention in Ulcerative Colitis from the perspective of inflammation and immunity based on systemic pharmacology
Authors
Yatian Yang
Chengcheng Qian
Rui Wu
Rui Wang
Jinmei Ou
Shoujin Liu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-022-03823-7

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue