Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2010

01-11-2010 | Preclinical study

UHRF1 inhibits MDR1 gene transcription and sensitizes breast cancer cells to anticancer drugs

Authors: Wei Jin, Yang Liu, Si-guang Xu, Wen-jin Yin, Jun-jie Li, Jin-ming Yang, Zhi-ming Shao

Published in: Breast Cancer Research and Treatment | Issue 1/2010

Login to get access

Abstract

Overexpression of MDR1 in breast cancer remains a major cause for the failure of chemotherapy. In the present report, we find UHRF1 plays an important role in inhibiting MDR1 promoter activity by directly binding to the MDR1 promoter. Knockdown of UHRF1 activates MDR1 promoter activity and expression, attenuates the binding of UHRF1 and HDAC1 to the MDR1 promoter. Overexpression of UHRF1 in NCI/ADR-RES cells can induce deacetylation of histones H3 and H4 on the MDR1 promoter, which is facilitated by recruitment of HDAC1 to the MDR1 promoter. Loss of histone acetylation is accompanied by loss of binding of the key transcription factor, MyoD, CBP and p300, locking in marked suppression of MDR1, increasing sensitivity of MDR cancer cells to cytotoxic drugs that are transported by P-glycoprotein (P-gp). The inhibition of MDR1 expression by UHRF1 may provide potential ways to overcome multidrug resistance (MDR) in breast cancer treatment.
Literature
1.
2.
go back to reference Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 83(12):4538–4542CrossRefPubMed Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 83(12):4538–4542CrossRefPubMed
3.
go back to reference Ling V, Thompson LH (1974) Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83(1):103–116CrossRefPubMed Ling V, Thompson LH (1974) Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83(1):103–116CrossRefPubMed
4.
go back to reference Fardel O, Lecureur V, Guillouzo A (1996) The PGP multidrug transporter. Gen Pharmacol 27(8):1283–1291PubMed Fardel O, Lecureur V, Guillouzo A (1996) The PGP multidrug transporter. Gen Pharmacol 27(8):1283–1291PubMed
5.
go back to reference Sharom FJ (1997) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 160(3):161–175CrossRefPubMed Sharom FJ (1997) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 160(3):161–175CrossRefPubMed
6.
go back to reference Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5(11):3352–3356PubMed Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW (1999) Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 5(11):3352–3356PubMed
7.
go back to reference Chaudhary PM, Roninson IB (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 85(8):632–639CrossRefPubMed Chaudhary PM, Roninson IB (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 85(8):632–639CrossRefPubMed
8.
go back to reference Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265(1):221–226PubMed Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265(1):221–226PubMed
9.
go back to reference Hu Z, Jin S, Scotto KW (2000) Transcriptional activation of the MDR1 gene by UV irradiation. Role of NF-Y and Sp1. J Biol Chem 275(4):2979–2985CrossRefPubMed Hu Z, Jin S, Scotto KW (2000) Transcriptional activation of the MDR1 gene by UV irradiation. Role of NF-Y and Sp1. J Biol Chem 275(4):2979–2985CrossRefPubMed
10.
go back to reference Uchiumi T, Kohno K, Tanimura H, Matsuo K, Sato S, Uchida Y, Kuwano M (1993) Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ 4(3):147–157PubMed Uchiumi T, Kohno K, Tanimura H, Matsuo K, Sato S, Uchida Y, Kuwano M (1993) Enhanced expression of the human multidrug resistance 1 gene in response to UV light irradiation. Cell Growth Differ 4(3):147–157PubMed
11.
go back to reference Walther W, Stein U (1994) Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J Cancer Res Clin Oncol 120(8):471–478CrossRefPubMed Walther W, Stein U (1994) Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J Cancer Res Clin Oncol 120(8):471–478CrossRefPubMed
12.
go back to reference Stein U, Walther W, Shoemaker RH (1996) Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer I 88(19):1383–1392CrossRef Stein U, Walther W, Shoemaker RH (1996) Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer I 88(19):1383–1392CrossRef
13.
go back to reference Stein U, Waltherm W, Shoemaker RH (1996) Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of MDR. Br J Cancer 74(9):1384–1391PubMed Stein U, Waltherm W, Shoemaker RH (1996) Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of MDR. Br J Cancer 74(9):1384–1391PubMed
14.
go back to reference Jin S, Scotto KW (1998) Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 18(7):4377–4384PubMed Jin S, Scotto KW (1998) Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 18(7):4377–4384PubMed
15.
go back to reference Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23(46):7601–7610CrossRefPubMed Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23(46):7601–7610CrossRefPubMed
16.
go back to reference Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764CrossRefPubMed Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764CrossRefPubMed
17.
go back to reference Achour M, Jacq X, Rondé P, Alhosin M, Charlot C, Chataigneau T, Jeanblanc M, Macaluso M, Giordano A, Hughes AD, Schini-Kerth VB, Bronner C (2008) The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27(15):2187–2197CrossRefPubMed Achour M, Jacq X, Rondé P, Alhosin M, Charlot C, Chataigneau T, Jeanblanc M, Macaluso M, Giordano A, Hughes AD, Schini-Kerth VB, Bronner C (2008) The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 27(15):2187–2197CrossRefPubMed
18.
go back to reference Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912CrossRefPubMed Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912CrossRefPubMed
19.
go back to reference Hashimoto H, Horton JR, Zhang X, Cheng X (2009) UHRF1, a modular multi-domain protein, regulates replicationcoupled crosstalk between DNA methylation and histone modifications. Epigenetics 4(1):8–14CrossRefPubMed Hashimoto H, Horton JR, Zhang X, Cheng X (2009) UHRF1, a modular multi-domain protein, regulates replicationcoupled crosstalk between DNA methylation and histone modifications. Epigenetics 4(1):8–14CrossRefPubMed
20.
go back to reference Kim JK, Estève PO, Jacobsen SE, Pradhan S (2009) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37(2):493–505CrossRefPubMed Kim JK, Estève PO, Jacobsen SE, Pradhan S (2009) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37(2):493–505CrossRefPubMed
21.
go back to reference Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C (2000) ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIa expression. Cancer Res 60(1):121–128PubMed Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C (2000) ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIa expression. Cancer Res 60(1):121–128PubMed
22.
go back to reference Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384(6610):641–643CrossRefPubMed Bannister AJ, Kouzarides T (1996) The CBP co-activator is a histone acetyltransferase. Nature 384(6610):641–643CrossRefPubMed
23.
go back to reference Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959CrossRefPubMed Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959CrossRefPubMed
24.
go back to reference Blobel GA (2002) CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 71(4):545–556PubMed Blobel GA (2002) CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 71(4):545–556PubMed
25.
go back to reference Vo N, Goodman RH (2001) CREB-binding Protein and p300 in transcriptional regulation. J Biol Chem 276(17):13505–13508PubMed Vo N, Goodman RH (2001) CREB-binding Protein and p300 in transcriptional regulation. J Biol Chem 276(17):13505–13508PubMed
26.
go back to reference Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL (1998) A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 95(7):3519–3524CrossRefPubMed Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL (1998) A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 95(7):3519–3524CrossRefPubMed
Metadata
Title
UHRF1 inhibits MDR1 gene transcription and sensitizes breast cancer cells to anticancer drugs
Authors
Wei Jin
Yang Liu
Si-guang Xu
Wen-jin Yin
Jun-jie Li
Jin-ming Yang
Zhi-ming Shao
Publication date
01-11-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0683-8

Other articles of this Issue 1/2010

Breast Cancer Research and Treatment 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine