Skip to main content
Top
Published in: Metabolic Brain Disease 3/2011

01-09-2011 | Original Paper

Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats

Authors: Rodrigo Binkowski de Andrade, Tanise Gemelli, Denise Bertin Rojas, Cláudia Funchal, Carlos Severo Dutra-Filho, Clovis Milton Duval Wannmacher

Published in: Metabolic Brain Disease | Issue 3/2011

Login to get access

Abstract

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. Tyrosinemia type II is a disorder of autosomal recessive inheritance characterized by neurological symptoms similar to those observed in patients with creatine deficiency syndromes. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study our main objective was to investigate the in vivo and in vitro effects of different concentrations and preincubation times of tyrosine on cytosolic and mitochondrial creatine kinase activities of the cerebral cortex from 14-day-old Wistar rats. The cytosolic CK was reduced by 15% at 1 mM and 32% at 2 mM tyrosine. Similarly, the mitochondrial CK was inhibited by 15% at 1 mM and 22% at 2 mM tyrosine. We observed that the inhibition caused by tyrosine was concentration-dependent and was prevented by reduced glutathione. Results also indicated that mitochondrial, but not cytosolic creatine kinase activity was inhibited by tyrosine in a time-dependent way. Finally, a single injection of L-Tyrosine methyl ester administered i.p. decreased cytosolic (31%) and mitochondrial (18%) creatine kinase activities of brain cortex from rats. Considering that creatine kinase is an enzyme dependent of thiol residues for its function and tyrosine induces oxidative stress, the results suggest that the inhibition caused by tyrosine might occur by oxidation of essential sulfhydryl groups of the enzyme. In case this also occurs in patients with tyrosinemia, it is possible that creatine kinase inhibition may contribute to the neurological dysfunction characteristic of tyrosinemia.
Literature
go back to reference Aksenov MY, Aksenova MV, Payne RM, Smith CD, Markesbery WR, Carney JM (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Experim Neurol 146:458–465CrossRef Aksenov MY, Aksenova MV, Payne RM, Smith CD, Markesbery WR, Carney JM (1997) The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Experim Neurol 146:458–465CrossRef
go back to reference Arstall MA, Bailey C, GrossWL BM, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979–988PubMedCrossRef Arstall MA, Bailey C, GrossWL BM, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979–988PubMedCrossRef
go back to reference Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313PubMedCrossRef Béard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115:297–313PubMedCrossRef
go back to reference Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and microdialysate levels in the rat. J Neurochem 87:310–317PubMedCrossRef Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and microdialysate levels in the rat. J Neurochem 87:310–317PubMedCrossRef
go back to reference Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76:425–434PubMedCrossRef Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76:425–434PubMedCrossRef
go back to reference Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55:54–56PubMed Burmistrov SO, Mashek OP, Kotin AM (1992) The action of acute alcoholic intoxication on antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp Klin Farmakol 55:54–56PubMed
go back to reference Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83:798–805PubMedCrossRef Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83:798–805PubMedCrossRef
go back to reference Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly R (1996) Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609PubMedCrossRef Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly R (1996) Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609PubMedCrossRef
go back to reference Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRef Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRef
go back to reference Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658PubMedCrossRef Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658PubMedCrossRef
go back to reference Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenova MV, Aksenov MY, Gabbita SP, Carney JM, Lowell M, Markesbery WR, Butterfield DA (1995) Brain regional correspondence between Alzheimer’s disease histopathology biomarkers of protein oxidation. J Neurochem 65:2146–2156PubMedCrossRef Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenova MV, Aksenov MY, Gabbita SP, Carney JM, Lowell M, Markesbery WR, Butterfield DA (1995) Brain regional correspondence between Alzheimer’s disease histopathology biomarkers of protein oxidation. J Neurochem 65:2146–2156PubMedCrossRef
go back to reference Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase. Clin Chim Acta 7:597–603PubMedCrossRef Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase. Clin Chim Acta 7:597–603PubMedCrossRef
go back to reference In ’t Zandt HJ, Renema WK, Streijger F, Jost C, Klomp DW, Oerlemans F, Van der Zee CE, Wieringa B, Heerschap A (2004) Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J Neurochem 90:1321–1330PubMedCrossRef In ’t Zandt HJ, Renema WK, Streijger F, Jost C, Klomp DW, Oerlemans F, Van der Zee CE, Wieringa B, Heerschap A (2004) Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J Neurochem 90:1321–1330PubMedCrossRef
go back to reference Jost CR, Van der Zee CE, In ’t Zandt HJA, Oerlemans F, Verheij M, Streijger F, Fransen J, Heerschap A, Cools AR, Wieringa B (2002) Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur J Neurosci 15:1692–1706PubMedCrossRef Jost CR, Van der Zee CE, In ’t Zandt HJA, Oerlemans F, Verheij M, Streijger F, Fransen J, Heerschap A, Cools AR, Wieringa B (2002) Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur J Neurosci 15:1692–1706PubMedCrossRef
go back to reference Kekelidze T, Khait I, Togliatti A, Benzecry JM, Wieringa B, Holtzman D (2001) Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. J Neurosci Res 1:66(5):866–872 Kekelidze T, Khait I, Togliatti A, Benzecry JM, Wieringa B, Holtzman D (2001) Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. J Neurosci Res 1:66(5):866–872
go back to reference Konorev E, Hogg N, Kalyanaraman B (1998) Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 427:171–174PubMedCrossRef Konorev E, Hogg N, Kalyanaraman B (1998) Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 427:171–174PubMedCrossRef
go back to reference Koufen P, Stark G (2000) Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim Biophys Acta 1501:44–50PubMed Koufen P, Stark G (2000) Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim Biophys Acta 1501:44–50PubMed
go back to reference Lemonnier F, Charpentier C, Odievre M, Larregue M, Lemonnier A (1979) Tyrosine aminotransferase isoenzyme deficiency. J Pediatr 94:931–932PubMedCrossRef Lemonnier F, Charpentier C, Odievre M, Larregue M, Lemonnier A (1979) Tyrosine aminotransferase isoenzyme deficiency. J Pediatr 94:931–932PubMedCrossRef
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267PubMed
go back to reference Macsai MS, Schwartz TL, HinkleD HummelMB, MulhernMG Root-man D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527PubMedCrossRef Macsai MS, Schwartz TL, HinkleD HummelMB, MulhernMG Root-man D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527PubMedCrossRef
go back to reference Mekhfi H, Veksler V, Mateo PH, Maupoil V, Rochette L, Ventura-Clapier R (1996) Creatine kinase in the main target of reactive oxygen species in cardiac myofibrils. Circ Res 17:1016–1027 Mekhfi H, Veksler V, Mateo PH, Maupoil V, Rochette L, Ventura-Clapier R (1996) Creatine kinase in the main target of reactive oxygen species in cardiac myofibrils. Circ Res 17:1016–1027
go back to reference Mitchell GA, Grompe M, Lambert M, Tanguay RM (2001) Hyper-tyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, pp 1777–1805 Mitchell GA, Grompe M, Lambert M, Tanguay RM (2001) Hyper-tyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, pp 1777–1805
go back to reference Morgane PJ, Mokler DJ, Galler JR (2002) Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 26:471–483PubMedCrossRef Morgane PJ, Mokler DJ, Galler JR (2002) Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 26:471–483PubMedCrossRef
go back to reference Morre MC, Hefti F, Wurtman RJ (1980) Regional tyrosine levels in rat brain after tyrosine administration. J Neural Transm 49:45–50PubMedCrossRef Morre MC, Hefti F, Wurtman RJ (1980) Regional tyrosine levels in rat brain after tyrosine administration. J Neural Transm 49:45–50PubMedCrossRef
go back to reference O’Gorman E, Beutner G, Dolder M, Korestsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414:253–257PubMedCrossRef O’Gorman E, Beutner G, Dolder M, Korestsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414:253–257PubMedCrossRef
go back to reference Rabinowitz LG, Williams LR, Anderson CE, Mazur A, Kaplan P (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269PubMedCrossRef Rabinowitz LG, Williams LR, Anderson CE, Mazur A, Kaplan P (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269PubMedCrossRef
go back to reference Ruetschi U, Cerone R, Perez-Cerda C, Schiaffino MC, Standing S, Ugarte M, Holme E (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinaemia type III. HumGenet 106(6):654–662 Ruetschi U, Cerone R, Perez-Cerda C, Schiaffino MC, Standing S, Ugarte M, Holme E (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinaemia type III. HumGenet 106(6):654–662
go back to reference Saks VA, Ventura-Clapier R, Aliev MK (1996) Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta 1274:81–88PubMedCrossRef Saks VA, Ventura-Clapier R, Aliev MK (1996) Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta 1274:81–88PubMedCrossRef
go back to reference Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRef Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239PubMedCrossRef
go back to reference Scott CR (2006) The genetic t yrosinemias. J Med Genet 142:121–126. Scott CR (2006) The genetic t yrosinemias. J Med Genet 142:121–126.
go back to reference Sener RN (2005) Tyrosinemia-computed tomography, magnetic resonance imaging, diffusion magnetic resonance imaging, and proton spectroscopy findings in the brain. J Comput Assist Tomogr 29:323–325PubMedCrossRef Sener RN (2005) Tyrosinemia-computed tomography, magnetic resonance imaging, diffusion magnetic resonance imaging, and proton spectroscopy findings in the brain. J Comput Assist Tomogr 29:323–325PubMedCrossRef
go back to reference Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenbach FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral córtex of Young rats. Int J Dev Neurosci 26:551–559PubMedCrossRef Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenbach FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral córtex of Young rats. Int J Dev Neurosci 26:551–559PubMedCrossRef
go back to reference Sgaravatti AM, Magnusson AS, De Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425PubMedCrossRef Sgaravatti AM, Magnusson AS, De Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425PubMedCrossRef
go back to reference Slotkin TA, Oliver CA, Seidler FJ (2005) Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res 157:172–180PubMedCrossRef Slotkin TA, Oliver CA, Seidler FJ (2005) Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res 157:172–180PubMedCrossRef
go back to reference Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699PubMedCrossRef Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699PubMedCrossRef
go back to reference Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE (2005) Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res 157:219–234PubMedCrossRef Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE (2005) Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res 157:219–234PubMedCrossRef
go back to reference Streijger F, Scheenen WJ, van Luijtelaar G, Oerlemans F, Wieringa B, Van der Zee CE (2010) Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics. Epilepsia 51(1):79–88PubMedCrossRef Streijger F, Scheenen WJ, van Luijtelaar G, Oerlemans F, Wieringa B, Van der Zee CE (2010) Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics. Epilepsia 51(1):79–88PubMedCrossRef
go back to reference Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB- isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455PubMed Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB- isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455PubMed
go back to reference Uylings HB (2000) Development of the cerebral cortex in rodents and man. Eur J Morphol 38:309–312PubMed Uylings HB (2000) Development of the cerebral cortex in rodents and man. Eur J Morphol 38:309–312PubMed
go back to reference Viglizzo GM, Occella C, Bleidl D, Rongioletti F (2006) Richner-Hanhart syndrome (tyrosinemia II): early diagnosis of an incomplete presentation with unusual findings. Pediatr Dermatol 23:259–261PubMedCrossRef Viglizzo GM, Occella C, Bleidl D, Rongioletti F (2006) Richner-Hanhart syndrome (tyrosinemia II): early diagnosis of an incomplete presentation with unusual findings. Pediatr Dermatol 23:259–261PubMedCrossRef
go back to reference Wallimann T, Wyss M, Brdiczka D, Nicolay K (1992) Intracellular compartmentation, structure and function of creatine kinase in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal 281:21–40PubMed Wallimann T, Wyss M, Brdiczka D, Nicolay K (1992) Intracellular compartmentation, structure and function of creatine kinase in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal 281:21–40PubMed
go back to reference Walliman T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998) Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA 6:116–119CrossRef Walliman T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998) Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA 6:116–119CrossRef
go back to reference Wolosker H, Panizzutti R, Englender S (1996) Inhibition of creatine kinase with S-nitrosoglutathione. FEBS Lett 392:274–276PubMedCrossRef Wolosker H, Panizzutti R, Englender S (1996) Inhibition of creatine kinase with S-nitrosoglutathione. FEBS Lett 392:274–276PubMedCrossRef
go back to reference Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166PubMedCrossRef Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166PubMedCrossRef
go back to reference Yuan G, Kaneko M, Masuda H, Hon RG, Kobayashi A, Yamazak N (1992) Decrease in heart mitochondrial creatine kinase activity due to oxygen free radical. Biochim Biophys Acta 1140:78–84PubMedCrossRef Yuan G, Kaneko M, Masuda H, Hon RG, Kobayashi A, Yamazak N (1992) Decrease in heart mitochondrial creatine kinase activity due to oxygen free radical. Biochim Biophys Acta 1140:78–84PubMedCrossRef
Metadata
Title
Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats
Authors
Rodrigo Binkowski de Andrade
Tanise Gemelli
Denise Bertin Rojas
Cláudia Funchal
Carlos Severo Dutra-Filho
Clovis Milton Duval Wannmacher
Publication date
01-09-2011
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 3/2011
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-011-9255-9

Other articles of this Issue 3/2011

Metabolic Brain Disease 3/2011 Go to the issue