Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2024

Open Access 01-12-2024 | Type 2 Diabetes | Research

The Regulate your Sitting Time (RESIT) intervention for reducing sitting time in individuals with type 2 diabetes: findings from a randomised-controlled feasibility trial

Authors: Marsha L. Brierley, Angel M. Chater, Charlotte L. Edwardson, Ellen M. Castle, Emily R. Hunt, Stuart JH. Biddle, Rupa Sisodia, Daniel P. Bailey

Published in: Diabetology & Metabolic Syndrome | Issue 1/2024

Login to get access

Abstract

Background

Reducing and breaking up sitting is recommended for optimal management of Type 2 diabetes mellitus (T2DM). Yet, there is limited evidence of interventions targeting these outcomes in individuals with this condition. The primary aim of this study was to assess the feasibility and acceptability of delivering and evaluating a tailored online intervention to reduce and break up sitting in adults with T2DM.

Methods

A mixed-methods two-arm randomised controlled feasibility trial was conducted in ambulatory adults with T2DM who were randomised 1:1 to the REgulate your SItting Time (RESIT) intervention or usual care control group. The intervention included online education, self-monitoring and prompt tools (wearable devices, smartphone apps, computer apps) and health coaching. Feasibility outcomes were recruitment, attrition, data completion rates and intervention acceptability. Measurements of device-assessed sitting (intended primary outcome for definitive trial), standing and stepping, and physical function, psychosocial health and wellbeing were taken at baseline, 3 months and 6 months. Individual semi-structured interviews were conducted at six-months (post intervention) to explore acceptability, feasibility and experiences of the trial and intervention using the Framework Method.

Results

Seventy participants aged 55 ± 11 years were recruited. Recruitment rate (proportion of eligible participants enrolled into the study) was 67% and participant retention rate at 6 months was 93% (n = 5 withdrawals). Data completion rates for daily sitting were 100% at baseline and ranged from 83 to 91% at 3 months and 6 months. Descriptive analysis demonstrated potential for the intervention to reduce device-measured sitting, which was 30.9 ± 87.2 and 22.2 ± 82.5 min/day lower in the intervention group at 3 and 6 months, respectively, compared with baseline. In the control group, sitting was 4.4 ± 99.5 and 23.7 ± 85.2 min/day lower at 3 and 6 months, respectively. Qualitative analysis identified three themes: reasons for participating in the trial, acceptability of study procedures, and the delivery and experience of taking part in the RESIT intervention. Overall, the measurement visits and intervention were acceptable to participants.

Conclusions

This study demonstrated the feasibility and acceptability of the RESIT intervention and evaluation methods, supporting a future definitive trial. If RESIT is found to be clinically effective, this could lead to changes in diabetes healthcare with a focus on reducing sitting.

Trial registration

The trial was registered with ISRCTN (number ISRCTN14832389).
Appendix
Available only for authorised users
Literature
2.
go back to reference Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23(11):1165–73.PubMedCrossRef Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23(11):1165–73.PubMedCrossRef
5.
go back to reference Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS ONE. 2013;8(11):e80000.PubMedPubMedCentralCrossRef Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS ONE. 2013;8(11):e80000.PubMedPubMedCentralCrossRef
6.
go back to reference Ku PW, Steptoe A, Liao Y, Hsueh MC, Chen LJ. A cut-off of daily sedentary time and all-cause mortality in adults: a meta-regression analysis involving more than 1 million participants. BMC Med. 2018;16(1):74.PubMedPubMedCentralCrossRef Ku PW, Steptoe A, Liao Y, Hsueh MC, Chen LJ. A cut-off of daily sedentary time and all-cause mortality in adults: a meta-regression analysis involving more than 1 million participants. BMC Med. 2018;16(1):74.PubMedPubMedCentralCrossRef
7.
go back to reference Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.PubMedPubMedCentralCrossRef Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.PubMedPubMedCentralCrossRef
8.
go back to reference Loprinzi PD. Accelerometer-determined sedentary and physical activity estimates among older adults with diabetes: considerations by demographic and comorbidity characteristics. J Aging Phys Act. 2014;22(3):432–40.PubMedCrossRef Loprinzi PD. Accelerometer-determined sedentary and physical activity estimates among older adults with diabetes: considerations by demographic and comorbidity characteristics. J Aging Phys Act. 2014;22(3):432–40.PubMedCrossRef
9.
go back to reference Henson J, Rowlands AV, Baldry E, Brady EM, Davies MJ, Edwardson CL, et al. Physical behaviors and chronotype in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001375.PubMedPubMedCentralCrossRef Henson J, Rowlands AV, Baldry E, Brady EM, Davies MJ, Edwardson CL, et al. Physical behaviors and chronotype in people with type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8(1):e001375.PubMedPubMedCentralCrossRef
10.
go back to reference Cooper AR, Sebire S, Montgomery AA, Peters TJ, Sharp DJ, Jackson N, et al. Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia. 2012;55(3):589–99.PubMedCrossRef Cooper AR, Sebire S, Montgomery AA, Peters TJ, Sharp DJ, Jackson N, et al. Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia. 2012;55(3):589–99.PubMedCrossRef
11.
go back to reference Cooper AJ, Brage S, Ekelund U, Wareham NJ, Griffin SJ, Simmons RK. Association between objectively assessed sedentary time and physical activity with metabolic risk factors among people with recently diagnosed type 2 diabetes. Diabetologia. 2014;57(1):73–82.PubMedCrossRef Cooper AJ, Brage S, Ekelund U, Wareham NJ, Griffin SJ, Simmons RK. Association between objectively assessed sedentary time and physical activity with metabolic risk factors among people with recently diagnosed type 2 diabetes. Diabetologia. 2014;57(1):73–82.PubMedCrossRef
12.
go back to reference Fritschi C, Park H, Richardson A, Park C, Collins EG, Mermelstein R, et al. Association between Daily Time Spent in sedentary behavior and duration of hyperglycemia in type 2 diabetes. Biol Res Nurs. 2016;18(2):160–6.PubMedCrossRef Fritschi C, Park H, Richardson A, Park C, Collins EG, Mermelstein R, et al. Association between Daily Time Spent in sedentary behavior and duration of hyperglycemia in type 2 diabetes. Biol Res Nurs. 2016;18(2):160–6.PubMedCrossRef
13.
go back to reference Willems I, Verbestel V, Dumuid D, Stanford TE, Calders P, Lapauw B, et al. Cross-sectional associations between 24-hour movement behaviors and cardiometabolic health among adults with type 2 diabetes mellitus: a comparison according to weight status. J Sci Med Sport. 2024;27(3):179–86.PubMedCrossRef Willems I, Verbestel V, Dumuid D, Stanford TE, Calders P, Lapauw B, et al. Cross-sectional associations between 24-hour movement behaviors and cardiometabolic health among adults with type 2 diabetes mellitus: a comparison according to weight status. J Sci Med Sport. 2024;27(3):179–86.PubMedCrossRef
14.
go back to reference Biddle SJH, Henson J, Davies MJ, Khunti K, Sutton S, Yates T, et al. Device-assessed total and prolonged sitting time: associations with anxiety, depression, and health-related quality of life in adults. J Affect Disord. 2021;287:107–14.PubMedCrossRef Biddle SJH, Henson J, Davies MJ, Khunti K, Sutton S, Yates T, et al. Device-assessed total and prolonged sitting time: associations with anxiety, depression, and health-related quality of life in adults. J Affect Disord. 2021;287:107–14.PubMedCrossRef
15.
go back to reference Huang BH, Hamer M, Chastin S, Pearson N, Koster A, Stamatakis E. Cross-sectional associations of device-measured sedentary behaviour and physical activity with cardio-metabolic health in the 1970 British Cohort Study. Diabet Med. 2021;38(2):e14392.PubMedCrossRef Huang BH, Hamer M, Chastin S, Pearson N, Koster A, Stamatakis E. Cross-sectional associations of device-measured sedentary behaviour and physical activity with cardio-metabolic health in the 1970 British Cohort Study. Diabet Med. 2021;38(2):e14392.PubMedCrossRef
16.
go back to reference Dempsey PC, Larsen RN, Sethi P, Sacre JW, Straznicky NE, Cohen ND, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016;39(6):964–72.PubMedCrossRef Dempsey PC, Larsen RN, Sethi P, Sacre JW, Straznicky NE, Cohen ND, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016;39(6):964–72.PubMedCrossRef
17.
go back to reference Dempsey PC, Sacre JW, Larsen RN, Straznicky NE, Sethi P, Cohen ND, et al. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. J Hypertens. 2016;34(12):2376–82.PubMedCrossRef Dempsey PC, Sacre JW, Larsen RN, Straznicky NE, Sethi P, Cohen ND, et al. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. J Hypertens. 2016;34(12):2376–82.PubMedCrossRef
18.
go back to reference Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical activity in individuals with type 2 diabetes: a Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54(2):353–68.PubMedPubMedCentralCrossRef Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical activity in individuals with type 2 diabetes: a Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54(2):353–68.PubMedPubMedCentralCrossRef
19.
go back to reference Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–86.PubMedPubMedCentralCrossRef Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycemia in type 2 diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–86.PubMedPubMedCentralCrossRef
20.
go back to reference Brierley ML, Chater AM, Smith LR, Bailey DP. The effectiveness of sedentary Behaviour reduction workplace interventions on cardiometabolic risk markers: a systematic review. Sports Med. 2019;49(11):1739–67.PubMedCrossRef Brierley ML, Chater AM, Smith LR, Bailey DP. The effectiveness of sedentary Behaviour reduction workplace interventions on cardiometabolic risk markers: a systematic review. Sports Med. 2019;49(11):1739–67.PubMedCrossRef
21.
go back to reference Gardner B, Smith L, Lorencatto F, Hamer M, Biddle SJ. How to reduce sitting time? A review of behaviour change strategies used in sedentary behaviour reduction interventions among adults. Health Psychol Rev. 2016;10(1):89–112.PubMedCrossRef Gardner B, Smith L, Lorencatto F, Hamer M, Biddle SJ. How to reduce sitting time? A review of behaviour change strategies used in sedentary behaviour reduction interventions among adults. Health Psychol Rev. 2016;10(1):89–112.PubMedCrossRef
22.
go back to reference Bailey DP, Mugridge LH, Dong F, Zhang X, Chater AM. Randomised controlled feasibility study of the MyHealthAvatar-Diabetes Smartphone App for reducing prolonged sitting time in type 2 diabetes Mellitus. Int J Environ Res Public Health. 2020;17(12):4414.PubMedPubMedCentralCrossRef Bailey DP, Mugridge LH, Dong F, Zhang X, Chater AM. Randomised controlled feasibility study of the MyHealthAvatar-Diabetes Smartphone App for reducing prolonged sitting time in type 2 diabetes Mellitus. Int J Environ Res Public Health. 2020;17(12):4414.PubMedPubMedCentralCrossRef
23.
go back to reference Hadgraft NT, Winkler E, Climie RE, Grace MS, Romero L, Owen N, et al. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: systematic review with meta-analyses. Br J Sports Med. 2021;55(3):144–54.PubMedCrossRef Hadgraft NT, Winkler E, Climie RE, Grace MS, Romero L, Owen N, et al. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: systematic review with meta-analyses. Br J Sports Med. 2021;55(3):144–54.PubMedCrossRef
24.
go back to reference Nieste I, Franssen WMA, Spaas J, Bruckers L, Savelberg H, Eijnde BO. Lifestyle interventions to reduce sedentary behaviour in clinical populations: a systematic review and meta-analysis of different strategies and effects on cardiometabolic health. Prev Med. 2021;148:106593.PubMedCrossRef Nieste I, Franssen WMA, Spaas J, Bruckers L, Savelberg H, Eijnde BO. Lifestyle interventions to reduce sedentary behaviour in clinical populations: a systematic review and meta-analysis of different strategies and effects on cardiometabolic health. Prev Med. 2021;148:106593.PubMedCrossRef
25.
go back to reference Sahin C, Courtney KL, Naylor PJ. Tailored mobile text messaging interventions targeting type 2 diabetes self-management: a systematic review and a meta-analysis. Digit Health. 2019;5:2055207619845279.PubMedPubMedCentral Sahin C, Courtney KL, Naylor PJ. Tailored mobile text messaging interventions targeting type 2 diabetes self-management: a systematic review and a meta-analysis. Digit Health. 2019;5:2055207619845279.PubMedPubMedCentral
26.
go back to reference Laranjo L, Ding D, Heleno B, Kocaballi B, Quiroz JC, Tong HL, et al. Do smartphone applications and activity trackers increase physical activity in adults? Systematic review, meta-analysis and metaregression. Br J Sports Med. 2021;55(8):422–32.PubMedCrossRef Laranjo L, Ding D, Heleno B, Kocaballi B, Quiroz JC, Tong HL, et al. Do smartphone applications and activity trackers increase physical activity in adults? Systematic review, meta-analysis and metaregression. Br J Sports Med. 2021;55(8):422–32.PubMedCrossRef
27.
go back to reference Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239.PubMedPubMedCentralCrossRef Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239.PubMedPubMedCentralCrossRef
28.
go back to reference Bailey DP, Edwardson CL, Pappas Y, Dong F, Hewson DJ, Biddle SJH, et al. A randomised-controlled feasibility study of the REgulate your SItting Time (RESIT) intervention for reducing sitting time in individuals with type 2 diabetes: study protocol. Pilot Feasibility Stud. 2021;7(1):76.PubMedPubMedCentralCrossRef Bailey DP, Edwardson CL, Pappas Y, Dong F, Hewson DJ, Biddle SJH, et al. A randomised-controlled feasibility study of the REgulate your SItting Time (RESIT) intervention for reducing sitting time in individuals with type 2 diabetes: study protocol. Pilot Feasibility Stud. 2021;7(1):76.PubMedPubMedCentralCrossRef
29.
go back to reference Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J Clin Epidemiol. 2012;65(3):301–8.PubMedCrossRef Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J Clin Epidemiol. 2012;65(3):301–8.PubMedCrossRef
30.
go back to reference Francis JJ, Johnston M, Robertson C, Glidewell L, Entwistle V, Eccles MP, et al. What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychol Health. 2010;25(10):1229–45.PubMedCrossRef Francis JJ, Johnston M, Robertson C, Glidewell L, Entwistle V, Eccles MP, et al. What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychol Health. 2010;25(10):1229–45.PubMedCrossRef
31.
go back to reference Edwardson CL, Biddle SJH, Clarke-Cornwell A, Clemes S, Davies MJ, Dunstan DW, et al. A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART Work & Life intervention for reducing daily sitting time in office workers: study protocol. BMC Public Health. 2018;18(1):1120.PubMedPubMedCentralCrossRef Edwardson CL, Biddle SJH, Clarke-Cornwell A, Clemes S, Davies MJ, Dunstan DW, et al. A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART Work & Life intervention for reducing daily sitting time in office workers: study protocol. BMC Public Health. 2018;18(1):1120.PubMedPubMedCentralCrossRef
32.
go back to reference Whitmore J. Coaching for performance: GROWing people, performance and purpose. London: Nicholas Brealey Publishing; 2002. Whitmore J. Coaching for performance: GROWing people, performance and purpose. London: Nicholas Brealey Publishing; 2002.
33.
go back to reference Michie S, Atkins L, West R. The Behaviour Change Wheel: a Guide to Designing interventions. London: Silverback Publishing; 2014. Michie S, Atkins L, West R. The Behaviour Change Wheel: a Guide to Designing interventions. London: Silverback Publishing; 2014.
34.
go back to reference Chater AM, Schulz J, Jones A, Burke A, Carr S, Kukucska D, et al. Outcome evaluation of active herts: a community-based physical activity programme for inactive adults at risk of cardiovascular disease and/or low mental wellbeing. Front Public Health. 2022;10:903109.PubMedPubMedCentralCrossRef Chater AM, Schulz J, Jones A, Burke A, Carr S, Kukucska D, et al. Outcome evaluation of active herts: a community-based physical activity programme for inactive adults at risk of cardiovascular disease and/or low mental wellbeing. Front Public Health. 2022;10:903109.PubMedPubMedCentralCrossRef
35.
go back to reference Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015;350:h1258.PubMedPubMedCentralCrossRef Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015;350:h1258.PubMedPubMedCentralCrossRef
36.
go back to reference Edwardson CL, Yates T, Biddle SJH, Davies MJ, Dunstan DW, Esliger DW, et al. Effectiveness of the stand more AT (SMArT) work intervention: cluster randomised controlled trial. BMJ. 2018;363:k3870.PubMedPubMedCentralCrossRef Edwardson CL, Yates T, Biddle SJH, Davies MJ, Dunstan DW, Esliger DW, et al. Effectiveness of the stand more AT (SMArT) work intervention: cluster randomised controlled trial. BMJ. 2018;363:k3870.PubMedPubMedCentralCrossRef
37.
go back to reference Winkler EA, Bodicoat DH, Healy GN, Bakrania K, Yates T, Owen N, et al. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol Meas. 2016;37(10):1653–68.PubMedCrossRef Winkler EA, Bodicoat DH, Healy GN, Bakrania K, Yates T, Owen N, et al. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol Meas. 2016;37(10):1653–68.PubMedCrossRef
38.
go back to reference Chiles NS, Phillips CL, Volpato S, Bandinelli S, Ferrucci L, Guralnik JM, et al. Diabetes, peripheral neuropathy, and lower-extremity function. J Diabetes Complications. 2014;28(1):91–5.PubMedCrossRef Chiles NS, Phillips CL, Volpato S, Bandinelli S, Ferrucci L, Guralnik JM, et al. Diabetes, peripheral neuropathy, and lower-extremity function. J Diabetes Complications. 2014;28(1):91–5.PubMedCrossRef
39.
go back to reference Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.PubMedCrossRef Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.PubMedCrossRef
40.
go back to reference Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, et al. Development of a fatigue scale. J Psychosom Res. 1993;37(2):147–53.PubMedCrossRef Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, et al. Development of a fatigue scale. J Psychosom Res. 1993;37(2):147–53.PubMedCrossRef
41.
go back to reference Schwarzer R, Renner B. Social-cognitive predictors of health behavior: action self-efficacy and coping self-efficacy. Health Psychol. 2000;19(5):487–95.PubMedCrossRef Schwarzer R, Renner B. Social-cognitive predictors of health behavior: action self-efficacy and coping self-efficacy. Health Psychol. 2000;19(5):487–95.PubMedCrossRef
42.
go back to reference Jerusalem M, Schwarzer R. Generalized self-efficacy scale. In: Weinman J SW, Johnston M, editors. Measures in Health psychology: a user’s Portfolio Causal and Control Beliefs. Windsor, UK: Nfer-Nelson; 1995. pp. 35–7. Jerusalem M, Schwarzer R. Generalized self-efficacy scale. In: Weinman J SW, Johnston M, editors. Measures in Health psychology: a user’s Portfolio Causal and Control Beliefs. Windsor, UK: Nfer-Nelson; 1995. pp. 35–7.
43.
go back to reference Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.PubMedCrossRef Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.PubMedCrossRef
44.
go back to reference Crawford JR, Henry JD. The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br J Clin Psychol. 2004;43(Pt 3):245–65.PubMedCrossRef Crawford JR, Henry JD. The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br J Clin Psychol. 2004;43(Pt 3):245–65.PubMedCrossRef
45.
go back to reference Bech P. October. WHO (five) well-being index (1998 version). Available at: www.who-5.org (accessed 14 2020). Bech P. October. WHO (five) well-being index (1998 version). Available at: www.who-5.org (accessed 14 2020).
47.
go back to reference Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.PubMedCrossRef Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.PubMedCrossRef
48.
go back to reference Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sorensen F, Andersson G, et al. Standardised nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon. 1987;18(3):233–7.PubMedCrossRef Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sorensen F, Andersson G, et al. Standardised nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon. 1987;18(3):233–7.PubMedCrossRef
49.
go back to reference Gale NK, Heath G, Cameron E, Rashid S, Redwood S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol. 2013;13(1):117.PubMedPubMedCentralCrossRef Gale NK, Heath G, Cameron E, Rashid S, Redwood S. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol. 2013;13(1):117.PubMedPubMedCentralCrossRef
50.
go back to reference Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. 2004;10(2):307–12.PubMedCrossRef Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. 2004;10(2):307–12.PubMedCrossRef
51.
go back to reference Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95.PubMedCrossRef Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95.PubMedCrossRef
52.
go back to reference Jennings CA, Vandelanotte C, Caperchione CM, Mummery WK. Effectiveness of a web-based physical activity intervention for adults with type 2 diabetes-a randomised controlled trial. Prev Med. 2014;60:33–40.PubMedCrossRef Jennings CA, Vandelanotte C, Caperchione CM, Mummery WK. Effectiveness of a web-based physical activity intervention for adults with type 2 diabetes-a randomised controlled trial. Prev Med. 2014;60:33–40.PubMedCrossRef
53.
go back to reference van den Brink MJ, Hummel M, Lemstra M, Berger MY, Dekker JH, Blanker MH. Factors affecting patient recruitment to trials: qualitative research in general practice. BJGP Open. 2020;4(3):bjgpopen20X101056.PubMedPubMedCentralCrossRef van den Brink MJ, Hummel M, Lemstra M, Berger MY, Dekker JH, Blanker MH. Factors affecting patient recruitment to trials: qualitative research in general practice. BJGP Open. 2020;4(3):bjgpopen20X101056.PubMedPubMedCentralCrossRef
55.
go back to reference Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–9.PubMedCrossRef Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–9.PubMedCrossRef
56.
go back to reference Healy GN, Eakin EG, Owen N, Lamontagne AD, Moodie M, Winkler EA, et al. A cluster randomized controlled trial to Reduce Office workers’ sitting time: Effect on Activity outcomes. Med Sci Sports Exerc. 2016;48(9):1787–97.PubMedCrossRef Healy GN, Eakin EG, Owen N, Lamontagne AD, Moodie M, Winkler EA, et al. A cluster randomized controlled trial to Reduce Office workers’ sitting time: Effect on Activity outcomes. Med Sci Sports Exerc. 2016;48(9):1787–97.PubMedCrossRef
57.
go back to reference Biddle SJ, Edwardson CL, Wilmot EG, Yates T, Gorely T, Bodicoat DH, et al. A Randomised Controlled Trial to Reduce Sedentary Time in Young adults at risk of type 2 diabetes Mellitus: Project STAND (Sedentary Time ANd Diabetes). PLoS ONE. 2015;10(12):e0143398.PubMedPubMedCentralCrossRef Biddle SJ, Edwardson CL, Wilmot EG, Yates T, Gorely T, Bodicoat DH, et al. A Randomised Controlled Trial to Reduce Sedentary Time in Young adults at risk of type 2 diabetes Mellitus: Project STAND (Sedentary Time ANd Diabetes). PLoS ONE. 2015;10(12):e0143398.PubMedPubMedCentralCrossRef
58.
go back to reference Nano J, Carinci F, Okunade O, Whittaker S, Walbaum M, Barnard-Kelly K, et al. A standard set of person-centred outcomes for diabetes mellitus: results of an international and unified approach. Diabet Med. 2020;37(12):2009–18.PubMedCrossRef Nano J, Carinci F, Okunade O, Whittaker S, Walbaum M, Barnard-Kelly K, et al. A standard set of person-centred outcomes for diabetes mellitus: results of an international and unified approach. Diabet Med. 2020;37(12):2009–18.PubMedCrossRef
59.
go back to reference Carr LJ, Bartee RT, Dorozynski C, Broomfield JF, Smith ML, Smith DT. Internet-delivered behavior change program increases physical activity and improves cardiometabolic disease risk factors in sedentary adults: results of a randomized controlled trial. Prev Med. 2008;46(5):431–8.PubMedCrossRef Carr LJ, Bartee RT, Dorozynski C, Broomfield JF, Smith ML, Smith DT. Internet-delivered behavior change program increases physical activity and improves cardiometabolic disease risk factors in sedentary adults: results of a randomized controlled trial. Prev Med. 2008;46(5):431–8.PubMedCrossRef
60.
go back to reference Connelly J, Kirk A, Masthoff J, MacRury S. The use of technology to promote physical activity in type 2 diabetes management: a systematic review. Diabet Med. 2013;30(12):1420–32.PubMedCrossRef Connelly J, Kirk A, Masthoff J, MacRury S. The use of technology to promote physical activity in type 2 diabetes management: a systematic review. Diabet Med. 2013;30(12):1420–32.PubMedCrossRef
61.
go back to reference Maylor BD, Edwardson CL, Zakrzewski-Fruer JK, Champion RB, Bailey DP. Efficacy of a Multicomponent Intervention to Reduce Workplace Sitting Time in Office Workers: a Cluster Randomized Controlled Trial. J Occup Environ Med. 2018;60(9):787–95.PubMedCrossRef Maylor BD, Edwardson CL, Zakrzewski-Fruer JK, Champion RB, Bailey DP. Efficacy of a Multicomponent Intervention to Reduce Workplace Sitting Time in Office Workers: a Cluster Randomized Controlled Trial. J Occup Environ Med. 2018;60(9):787–95.PubMedCrossRef
62.
go back to reference Lynch BM, Nguyen NH, Moore MM, Reeves MM, Rosenberg DE, Boyle T, et al. A randomized controlled trial of a wearable technology-based intervention for increasing moderate to vigorous physical activity and reducing sedentary behavior in breast cancer survivors: the ACTIVATE Trial. Cancer. 2019;125(16):2846–55.PubMedCrossRef Lynch BM, Nguyen NH, Moore MM, Reeves MM, Rosenberg DE, Boyle T, et al. A randomized controlled trial of a wearable technology-based intervention for increasing moderate to vigorous physical activity and reducing sedentary behavior in breast cancer survivors: the ACTIVATE Trial. Cancer. 2019;125(16):2846–55.PubMedCrossRef
63.
go back to reference Arrogi A, Bogaerts A, Seghers J, Devloo K, Vanden Abeele V, Geurts L, et al. Evaluation of stAPP: a smartphone-based intervention to reduce prolonged sitting among Belgian adults. Health Promot Int. 2019;34(1):16–27.PubMedCrossRef Arrogi A, Bogaerts A, Seghers J, Devloo K, Vanden Abeele V, Geurts L, et al. Evaluation of stAPP: a smartphone-based intervention to reduce prolonged sitting among Belgian adults. Health Promot Int. 2019;34(1):16–27.PubMedCrossRef
64.
go back to reference Sherifali D, Viscardi V, Bai JW, Ali RM. Evaluating the Effect of a Diabetes Health Coach in individuals with type 2 diabetes. Can J Diabetes. 2016;40(1):84–94.PubMedCrossRef Sherifali D, Viscardi V, Bai JW, Ali RM. Evaluating the Effect of a Diabetes Health Coach in individuals with type 2 diabetes. Can J Diabetes. 2016;40(1):84–94.PubMedCrossRef
65.
go back to reference Edwardson CL, Biddle SJH, Clemes SA, Davies MJ, Dunstan DW, Eborall H, et al. Effectiveness of an intervention for reducing sitting time and improving health in office workers: three arm cluster randomised controlled trial. BMJ. 2022;378:e069288.PubMedPubMedCentralCrossRef Edwardson CL, Biddle SJH, Clemes SA, Davies MJ, Dunstan DW, Eborall H, et al. Effectiveness of an intervention for reducing sitting time and improving health in office workers: three arm cluster randomised controlled trial. BMJ. 2022;378:e069288.PubMedPubMedCentralCrossRef
66.
go back to reference Edwardson CL, Abell L, Clarke-Cornwell A, Dunstan DW, Gray LJ, Healy GN, et al. Implementation and engagement of the SMART Work & Life sitting reduction intervention: an exploratory analysis on intervention effectiveness. Int J Behav Nutr Phys Act. 2023;20(1):148.PubMedPubMedCentralCrossRef Edwardson CL, Abell L, Clarke-Cornwell A, Dunstan DW, Gray LJ, Healy GN, et al. Implementation and engagement of the SMART Work & Life sitting reduction intervention: an exploratory analysis on intervention effectiveness. Int J Behav Nutr Phys Act. 2023;20(1):148.PubMedPubMedCentralCrossRef
67.
go back to reference Edwardson CL, Maylor BD, Biddle SJH, Clarke-Cornwell AM, Clemes SA, Davies MJ, et al. Participant and workplace champion experiences of an intervention designed to reduce sitting time in desk-based workers: SMART work & life. Int J Behav Nutr Phys Act. 2023;20(1):142.PubMedPubMedCentralCrossRef Edwardson CL, Maylor BD, Biddle SJH, Clarke-Cornwell AM, Clemes SA, Davies MJ, et al. Participant and workplace champion experiences of an intervention designed to reduce sitting time in desk-based workers: SMART work & life. Int J Behav Nutr Phys Act. 2023;20(1):142.PubMedPubMedCentralCrossRef
68.
go back to reference Konig LM, Allmeta A, Christlein N, Van Emmenis M, Sutton S. A systematic review and meta-analysis of studies of reactivity to digital in-the-moment measurement of health behaviour. Health Psychol Rev. 2022;16(4):551–75.PubMedCrossRef Konig LM, Allmeta A, Christlein N, Van Emmenis M, Sutton S. A systematic review and meta-analysis of studies of reactivity to digital in-the-moment measurement of health behaviour. Health Psychol Rev. 2022;16(4):551–75.PubMedCrossRef
69.
go back to reference Yates T, Henson J, Edwardson C, Dunstan D, Bodicoat DH, Khunti K, et al. Objectively measured sedentary time and associations with insulin sensitivity: importance of reallocating sedentary time to physical activity. Prev Med. 2015;76:79–83.PubMedCrossRef Yates T, Henson J, Edwardson C, Dunstan D, Bodicoat DH, Khunti K, et al. Objectively measured sedentary time and associations with insulin sensitivity: importance of reallocating sedentary time to physical activity. Prev Med. 2015;76:79–83.PubMedCrossRef
70.
go back to reference Farrahi V, Rostami M, Nauha L, Korpisaari M, Niemela M, Jamsa T, et al. Replacing sedentary time with physical activity and sleep: associations with cardiometabolic health markers in adults. Scand J Med Sci Sports. 2023;33(6):907–20.PubMedCrossRef Farrahi V, Rostami M, Nauha L, Korpisaari M, Niemela M, Jamsa T, et al. Replacing sedentary time with physical activity and sleep: associations with cardiometabolic health markers in adults. Scand J Med Sci Sports. 2023;33(6):907–20.PubMedCrossRef
71.
go back to reference de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–6.PubMedCrossRef de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–6.PubMedCrossRef
Metadata
Title
The Regulate your Sitting Time (RESIT) intervention for reducing sitting time in individuals with type 2 diabetes: findings from a randomised-controlled feasibility trial
Authors
Marsha L. Brierley
Angel M. Chater
Charlotte L. Edwardson
Ellen M. Castle
Emily R. Hunt
Stuart JH. Biddle
Rupa Sisodia
Daniel P. Bailey
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Type 2 Diabetes
Published in
Diabetology & Metabolic Syndrome / Issue 1/2024
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-024-01336-6

Other articles of this Issue 1/2024

Diabetology & Metabolic Syndrome 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.