Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2020

Open Access 01-12-2020 | Type 2 Diabetes | Original investigation

Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year randomized controlled trial

Authors: João P. Magalhães, Diana A. Santos, Inês R. Correia, Megan Hetherington-Rauth, Rogério Ribeiro, João F. Raposo, Andreia Matos, Manuel D. Bicho, Luís B. Sardinha

Published in: Cardiovascular Diabetology | Issue 1/2020

Login to get access

Abstract

Background

Exercise is a well-accepted strategy to improve lipid and inflammatory profile in individuals with type 2 diabetes (T2DM). However, the exercise intensity having the most benefits on lipids and inflammatory markers in patients with T2DM remains unclear. We aimed to analyse the impact of a 1-year combined high-intensity interval training (HIIT) with resistance training (RT), and a moderate continuous training (MCT) with RT on inflammatory and lipid profile in individuals with T2DM.

Methods

Individuals with T2DM (n = 80, aged 59 years) performed a 1-year randomized controlled trial and were randomized into three groups (control, n = 27; HIIT with RT, n = 25; MCT with RT, n = 28). Exercise sessions were supervised with a frequency of 3 days per week. Inflammatory and lipid profiles were measured at baseline and at 1-year follow-up. Changes in inflammatory and lipid markers were assessed using generalized estimating equations.

Results

After adjusting for sex, age and baseline moderate-to-vigorous physical activity (MVPA), we observed a time-by-group interaction for Interleukin-6 (IL-6) in both the MCT with RT (β = − 0.70, p = 0.034) and HIIT with RT (β = − 0.62, p = 0.049) groups, whereas, only the HIIT with RT group improved total cholesterol (β = − 0.03, p = 0.045) and LDL-C (β = − 0.03, p = 0.034), when compared to control. No effect was observed for C-reactive protein (CRP), cortisol, tumour necrosis factor-α (TNF-α), soluble form of the haptoglobin-hemoglobin receptor CD163 (sCD163), triglycerides and HDL-C in both groups (p > 0.05).

Conclusions

Favorable adaptations on IL-6 were observed in both the HIIT and MCT combined with RT groups following a long-term 1-year exercise intervention in individuals with T2DM. However, only the HIIT with RT prevented further derangement of total cholesterol and LDL-C, when compared to the control group. Therefore, in order to encourage exercise participation and improve inflammatory profile, either exercise protocols may be prescribed, however, HIIT with RT may have further benefits on the lipid profile.
Trial registration Clinicaltrials.gov ID: NCT03144505
Literature
1.
go back to reference Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44.PubMedCrossRef Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–44.PubMedCrossRef
3.
go back to reference Bosanska L, Michalsky D, Lacinova Z, Dostalova I, Bartlova M, Haluzikova D, et al. The influence of obesity and different fat depots on adipose tissue gene expression and protein levels of cell adhesion molecules. Physiol Res. 2010;59(1):79–88.PubMed Bosanska L, Michalsky D, Lacinova Z, Dostalova I, Bartlova M, Haluzikova D, et al. The influence of obesity and different fat depots on adipose tissue gene expression and protein levels of cell adhesion molecules. Physiol Res. 2010;59(1):79–88.PubMed
4.
go back to reference Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.PubMedCrossRef Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.PubMedCrossRef
5.
go back to reference Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes. Novartis Found Symp. 2007;286:86–94.PubMedCrossRef Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes. Novartis Found Symp. 2007;286:86–94.PubMedCrossRef
6.
go back to reference Fjeldborg K, Christiansen T, Bennetzen M, Møller H, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity. 2013;21(12):2437–43.PubMedCrossRef Fjeldborg K, Christiansen T, Bennetzen M, Møller H, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity. 2013;21(12):2437–43.PubMedCrossRef
7.
go back to reference Moller HJ, Frikke-Schmidt R, Moestrup SK, Nordestgaard BG, Tybjaerg-Hansen A. Serum soluble CD163 predicts risk of type 2 diabetes in the general population. Clin Chem. 2011;57(2):291–7.PubMedCrossRef Moller HJ, Frikke-Schmidt R, Moestrup SK, Nordestgaard BG, Tybjaerg-Hansen A. Serum soluble CD163 predicts risk of type 2 diabetes in the general population. Clin Chem. 2011;57(2):291–7.PubMedCrossRef
8.
go back to reference American Diabetes A. 1, Diabetes American. Improving care and promoting health in populations: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S7–13. American Diabetes A. 1, Diabetes American. Improving care and promoting health in populations: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S7–13.
9.
go back to reference Sabag A, Way KL, Keating SE, Sultana RN, O’Connor HT, Baker MK, et al. Exercise and ectopic fat in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2017;43(3):195–210.PubMedCrossRef Sabag A, Way KL, Keating SE, Sultana RN, O’Connor HT, Baker MK, et al. Exercise and ectopic fat in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2017;43(3):195–210.PubMedCrossRef
10.
go back to reference Jiang Y, Tan SJ, Wang ZY, Guo Z, Li QW, Wang JX. Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes. J Exerc Sci Fit. 2020;18(1):7–13.PubMedCrossRef Jiang Y, Tan SJ, Wang ZY, Guo Z, Li QW, Wang JX. Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in older people with type 2 diabetes. J Exerc Sci Fit. 2020;18(1):7–13.PubMedCrossRef
11.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRef Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRef
12.
go back to reference Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.PubMedCrossRef Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.PubMedCrossRef
13.
go back to reference Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRef Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRef
14.
go back to reference Dun Y, Thomas RJ, Smith JR, Medina-Inojosa JR, Squires RW, Bonikowske AR, et al. High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. Cardiovasc Diabetol. 2019;18(1):104.PubMedPubMedCentralCrossRef Dun Y, Thomas RJ, Smith JR, Medina-Inojosa JR, Squires RW, Bonikowske AR, et al. High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. Cardiovasc Diabetol. 2019;18(1):104.PubMedPubMedCentralCrossRef
15.
go back to reference Marquis-Gravel G, Hayami D, Juneau M, Nigam A, Guilbeault V, Latour E, et al. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients. Prev Med Rep. 2015;2:314–8.PubMedPubMedCentralCrossRef Marquis-Gravel G, Hayami D, Juneau M, Nigam A, Guilbeault V, Latour E, et al. Intensive lifestyle intervention including high-intensity interval training program improves insulin resistance and fasting plasma glucose in obese patients. Prev Med Rep. 2015;2:314–8.PubMedPubMedCentralCrossRef
16.
go back to reference Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macroand microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Spor. 2014;24(2):E69–76.CrossRef Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macroand microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Spor. 2014;24(2):E69–76.CrossRef
17.
go back to reference Gibala MJ, Little JP. Just HIT it! A time-efficient exercise strategy to improve muscle insulin sensitivity. J Physiol-London. 2010;588(18):3341–2.PubMedCrossRef Gibala MJ, Little JP. Just HIT it! A time-efficient exercise strategy to improve muscle insulin sensitivity. J Physiol-London. 2010;588(18):3341–2.PubMedCrossRef
18.
go back to reference Wormgoor SG, Dalleck LC, Zinn C, Harris NK. Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes. 2017;41(5):536–47.PubMedCrossRef Wormgoor SG, Dalleck LC, Zinn C, Harris NK. Effects of high-intensity interval training on people living with type 2 diabetes: a narrative review. Can J Diabetes. 2017;41(5):536–47.PubMedCrossRef
19.
go back to reference Madsen SM, Thorup AC, Bjerre M, Jeppesen PB. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome? Arch Physiol Biochem. 2015;121(4):129–38.PubMedCrossRef Madsen SM, Thorup AC, Bjerre M, Jeppesen PB. Does 8 weeks of strenuous bicycle exercise improve diabetes-related inflammatory cytokines and free fatty acids in type 2 diabetes patients and individuals at high-risk of metabolic syndrome? Arch Physiol Biochem. 2015;121(4):129–38.PubMedCrossRef
20.
go back to reference Mallard AR, Hollekim-Strand SM, Coombes JS, Ingul CB. Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus. J Sci Med Sport. 2017;20(10):893–8.PubMedCrossRef Mallard AR, Hollekim-Strand SM, Coombes JS, Ingul CB. Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus. J Sci Med Sport. 2017;20(10):893–8.PubMedCrossRef
21.
go back to reference Jabardo-Camprubi G, Donat-Roca R, Sitja-Rabert M, Mila-Villarroel R, Bort-Roig J. Drop-out ratio between moderate to high-intensity physical exercise treatment by patients with, or at risk of, type 2 diabetes mellitus: a systematic review and meta-analysis. Physiol Behav. 2020;215:112786.PubMedCrossRef Jabardo-Camprubi G, Donat-Roca R, Sitja-Rabert M, Mila-Villarroel R, Bort-Roig J. Drop-out ratio between moderate to high-intensity physical exercise treatment by patients with, or at risk of, type 2 diabetes mellitus: a systematic review and meta-analysis. Physiol Behav. 2020;215:112786.PubMedCrossRef
22.
go back to reference Magalhaes JP, Judice PB, Ribeiro R, Andrade R, Raposo J, Dores H, et al. Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: a one-year randomized controlled trial. Diabetes Obes Metab. 2019;21(3):550–9.PubMedCrossRef Magalhaes JP, Judice PB, Ribeiro R, Andrade R, Raposo J, Dores H, et al. Effectiveness of high-intensity interval training combined with resistance training versus continuous moderate-intensity training combined with resistance training in patients with type 2 diabetes: a one-year randomized controlled trial. Diabetes Obes Metab. 2019;21(3):550–9.PubMedCrossRef
23.
go back to reference Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care. 2017;40(Suppl 1):S4-S5. Standards of Medical Care in Diabetes-2017: Summary of Revisions. Diabetes Care. 2017;40(Suppl 1):S4-S5.
24.
go back to reference Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.PubMedCrossRef Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27.PubMedCrossRef
25.
go back to reference Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Annales medicinae experimentalis et biologiae Fenniae. 1957;35(3):307–15.PubMed Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Annales medicinae experimentalis et biologiae Fenniae. 1957;35(3):307–15.PubMed
27.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.PubMedCrossRef Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.PubMedCrossRef
28.
go back to reference van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med. 2013;71(4):174–87.PubMed van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med. 2013;71(4):174–87.PubMed
29.
30.
go back to reference Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20(8):608–17.PubMedCrossRef Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20(8):608–17.PubMedCrossRef
31.
go back to reference Zoppini G, Targher G, Zamboni C, Venturi C, Cacciatori V, Moghetti P, et al. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovas. 2006;16(8):543–9.CrossRef Zoppini G, Targher G, Zamboni C, Venturi C, Cacciatori V, Moghetti P, et al. Effects of moderate-intensity exercise training on plasma biomarkers of inflammation and endothelial dysfunction in older patients with type 2 diabetes. Nutr Metab Cardiovas. 2006;16(8):543–9.CrossRef
32.
go back to reference Pedersen LR, Olsen RH, Anholm C, Astrup A, Eugen-Olsen J, Fenger M, et al. Effects of 1 year of exercise training versus combined exercise training and weight loss on body composition, low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial. Cardiovasc Diabetol. 2019;18(1):127.PubMedPubMedCentralCrossRef Pedersen LR, Olsen RH, Anholm C, Astrup A, Eugen-Olsen J, Fenger M, et al. Effects of 1 year of exercise training versus combined exercise training and weight loss on body composition, low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial. Cardiovasc Diabetol. 2019;18(1):127.PubMedPubMedCentralCrossRef
33.
go back to reference Leggate M, Carter WG, Evans MJ, Vennard RA, Sribala-Sundaram S, Nimmo MA. Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol. 2012;112(8):1353–60.PubMedPubMedCentralCrossRef Leggate M, Carter WG, Evans MJ, Vennard RA, Sribala-Sundaram S, Nimmo MA. Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. J Appl Physiol. 2012;112(8):1353–60.PubMedPubMedCentralCrossRef
34.
go back to reference Gerosa-Neto J, Antunes BM, Campos EZ, Rodrigues J, Ferrari GD, Rosa Neto JC, et al. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehab. 2016;12(6):575–80.CrossRef Gerosa-Neto J, Antunes BM, Campos EZ, Rodrigues J, Ferrari GD, Rosa Neto JC, et al. Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. J Exerc Rehab. 2016;12(6):575–80.CrossRef
35.
go back to reference Durrer C, Francois M, Neudorf H, Little JP. Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R529–38.PubMedPubMedCentralCrossRef Durrer C, Francois M, Neudorf H, Little JP. Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R529–38.PubMedPubMedCentralCrossRef
36.
go back to reference Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–47.PubMedCrossRef Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–47.PubMedCrossRef
37.
go back to reference Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.PubMedCrossRef Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.PubMedCrossRef
38.
39.
go back to reference Rodgaard-Hansen S, St George A, Kazankov K, Bauman A, George J, Gronbaek H, et al. Effects of lifestyle intervention on soluble CD163, a macrophage activation marker, in patients with non-alcoholic fatty liver disease. Scand J Clin Lab Invest. 2017;77(7):498–504.PubMedCrossRef Rodgaard-Hansen S, St George A, Kazankov K, Bauman A, George J, Gronbaek H, et al. Effects of lifestyle intervention on soluble CD163, a macrophage activation marker, in patients with non-alcoholic fatty liver disease. Scand J Clin Lab Invest. 2017;77(7):498–504.PubMedCrossRef
40.
go back to reference Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101:9–20.PubMedCrossRef Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101:9–20.PubMedCrossRef
41.
go back to reference Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211–21.PubMedCrossRef Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211–21.PubMedCrossRef
42.
go back to reference De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva A. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2018;137:149–59.PubMedCrossRef De Nardi AT, Tolves T, Lenzi TL, Signori LU, Silva A. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2018;137:149–59.PubMedCrossRef
43.
go back to reference Terada T, Friesen A, Chahal BS, Bell GJ, McCargar LJ, Boule NG. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pr. 2013;99(2):120–9.CrossRef Terada T, Friesen A, Chahal BS, Bell GJ, McCargar LJ, Boule NG. Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res Clin Pr. 2013;99(2):120–9.CrossRef
44.
go back to reference Maillard F, Rousset S, Pereira B, Traore A, Del Amaze PD, Boirie Y, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42(6):433–41.PubMedCrossRef Maillard F, Rousset S, Pereira B, Traore A, Del Amaze PD, Boirie Y, et al. High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes Metab. 2016;42(6):433–41.PubMedCrossRef
45.
go back to reference Henson J, Edwardson CL, Davies MJ, Gill JMR, Heaney LM, Khunti K, et al. Physical activity and lipidomics in a population at high risk of type 2 diabetes mellitus. J Sport Sci. 2020;38(10):1150–60.CrossRef Henson J, Edwardson CL, Davies MJ, Gill JMR, Heaney LM, Khunti K, et al. Physical activity and lipidomics in a population at high risk of type 2 diabetes mellitus. J Sport Sci. 2020;38(10):1150–60.CrossRef
46.
go back to reference Magalhaes JP, Melo X, Correia IR, Ribeiro RT, Raposo J, Dores H, et al. Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: a 1-year randomized controlled trial. Cardiovasc Diabetol. 2019;18(1):34.PubMedPubMedCentralCrossRef Magalhaes JP, Melo X, Correia IR, Ribeiro RT, Raposo J, Dores H, et al. Effects of combined training with different intensities on vascular health in patients with type 2 diabetes: a 1-year randomized controlled trial. Cardiovasc Diabetol. 2019;18(1):34.PubMedPubMedCentralCrossRef
47.
go back to reference Browning LM, Krebs JD, Jebb SA. Discrimination ratio analysis of inflammatory markers: implications for the study of inflammation in chronic disease. Metabolism. 2004;53(7):899–903.PubMedCrossRef Browning LM, Krebs JD, Jebb SA. Discrimination ratio analysis of inflammatory markers: implications for the study of inflammation in chronic disease. Metabolism. 2004;53(7):899–903.PubMedCrossRef
Metadata
Title
Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year randomized controlled trial
Authors
João P. Magalhães
Diana A. Santos
Inês R. Correia
Megan Hetherington-Rauth
Rogério Ribeiro
João F. Raposo
Andreia Matos
Manuel D. Bicho
Luís B. Sardinha
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Type 2 Diabetes
Published in
Cardiovascular Diabetology / Issue 1/2020
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-020-01136-y

Other articles of this Issue 1/2020

Cardiovascular Diabetology 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine