Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2021

Open Access 01-12-2021 | Type 2 Diabetes | Original investigation

Clinical and metabolomic predictors of regression to normoglycemia in a population at intermediate cardiometabolic risk

Authors: Magdalena del Rocío Sevilla-González, Jordi Merino, Hortensia Moreno-Macias, Rosalba Rojas-Martínez, Donají Verónica Gómez-Velasco, Alisa K. Manning

Published in: Cardiovascular Diabetology | Issue 1/2021

Login to get access

Abstract

Background

Impaired fasting glucose (IFG) is a prevalent and potentially reversible intermediate stage leading to type 2 diabetes that increases risk for cardiometabolic complications. The identification of clinical and molecular factors associated with the reversal, or regression, from IFG to a normoglycemia state would enable more efficient cardiovascular risk reduction strategies. The aim of this study was to identify clinical and biological predictors of regression to normoglycemia in a non-European population characterized by high rates of type 2 diabetes.

Methods

We conducted a prospective, population-based study among 9637 Mexican individuals using clinical features and plasma metabolites. Among them, 491 subjects were classified as IFG, defined as fasting glucose between 100 and 125 mg/dL at baseline. Regression to normoglycemia was defined by fasting glucose less than 100 mg/dL in the follow-up visit. Plasma metabolites were profiled by Nuclear Magnetic Resonance. Multivariable cox regression models were used to examine the associations of clinical and metabolomic factors with regression to normoglycemia. We assessed the predictive capability of models that included clinical factors alone and models that included clinical factors and prioritized metabolites.

Results

During a median follow-up period of 2.5 years, 22.6% of participants (n = 111) regressed to normoglycemia, and 29.5% progressed to type 2 diabetes (n = 145). The multivariate adjusted relative risk of regression to normoglycemia was 1.10 (95% confidence interval [CI] 1.25 to 1.32) per 10 years of age increase, 0.94 (95% CI 0.91–0.98) per 1 SD increase in BMI, and 0.91 (95% CI 0.88–0.95) per 1 SD increase in fasting glucose. A model including information from age, fasting glucose, and BMI showed a good prediction of regression to normoglycemia (AUC = 0.73 (95% CI 0.66–0.78). The improvement after adding information from prioritized metabolites (TG in large HDL, albumin, and citrate) was non-significant (AUC = 0.74 (95% CI 0.68–0.80), p value = 0.485).

Conclusion

In individuals with IFG, information from three clinical variables easily obtained in the clinical setting showed a good prediction of regression to normoglycemia beyond metabolomic features. Our findings can serve to inform and design future cardiovascular prevention strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.CrossRef
2.
go back to reference Abdul-Ghani M, DeFronzo RA, Jayyousi A. Prediabetes and risk of diabetes and associated complications. Curr Opin Clin Nutr Metab Care. 2016;19(5):394–9.CrossRef Abdul-Ghani M, DeFronzo RA, Jayyousi A. Prediabetes and risk of diabetes and associated complications. Curr Opin Clin Nutr Metab Care. 2016;19(5):394–9.CrossRef
3.
go back to reference Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.CrossRef Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953.CrossRef
4.
go back to reference Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.CrossRef Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.CrossRef
5.
go back to reference Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRef Sarwar N, Gao P, Seshasai SRK, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRef
6.
go back to reference Turner R. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef Turner R. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef
8.
go back to reference Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the collaborative atorvastatin diabetes study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.CrossRef Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the collaborative atorvastatin diabetes study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.CrossRef
10.
go back to reference Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, Mihaylova B, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405.CrossRef Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, Mihaylova B, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405.CrossRef
11.
go back to reference Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. In: Diabetes care. Arlington: American Diabetes Association Inc.; 2017. p. 687–93. Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. In: Diabetes care. Arlington: American Diabetes Association Inc.; 2017. p. 687–93.
12.
go back to reference Leong A, Chen J, Wheeler E, Hivert MF, Liu CT, Merino J, et al. Mendelian randomization analysis of hemoglobin A1c as a risk factor for coronary artery disease. In: Diabetes care. Arlington: American Diabetes Association Inc.; 2019. p. 1202–8. Leong A, Chen J, Wheeler E, Hivert MF, Liu CT, Merino J, et al. Mendelian randomization analysis of hemoglobin A1c as a risk factor for coronary artery disease. In: Diabetes care. Arlington: American Diabetes Association Inc.; 2019. p. 1202–8.
13.
go back to reference Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF, Diabetes Prevention Program Research Group. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care. 2009;32(9):1583–8.CrossRef Perreault L, Kahn SE, Christophi CA, Knowler WC, Hamman RF, Diabetes Prevention Program Research Group. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program. Diabetes Care. 2009;32(9):1583–8.CrossRef
14.
go back to reference Herman WH, Pan Q, Edelstein SL, Mather KJ, Perreault L, Barrett-Connor E, et al. Impact of lifestyle and metformin interventions on the risk of progression to diabetes and regression to normal glucose regulation in overweight or obese people with impaired glucose regulation. Diabetes Care. 2017;40(12):1668–77.CrossRef Herman WH, Pan Q, Edelstein SL, Mather KJ, Perreault L, Barrett-Connor E, et al. Impact of lifestyle and metformin interventions on the risk of progression to diabetes and regression to normal glucose regulation in overweight or obese people with impaired glucose regulation. Diabetes Care. 2017;40(12):1668–77.CrossRef
17.
go back to reference Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE, et al. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the diabetes prevention program outcomes study. Lancet. 2012;379(9833):2243–51.CrossRef Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE, et al. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the diabetes prevention program outcomes study. Lancet. 2012;379(9833):2243–51.CrossRef
18.
go back to reference Nanditha A, Ram J, Snehalatha C, Selvam S, Priscilla S, Shetty AS, et al. Early improvement predicts reduced risk of incident diabetes and improved cardiovascular risk in prediabetic Asian Indian men participating in a 2-year lifestyle intervention program. Diabetes Care. 2014;37(11):3009–15. https://doi.org/10.2337/dc14-0407.CrossRefPubMed Nanditha A, Ram J, Snehalatha C, Selvam S, Priscilla S, Shetty AS, et al. Early improvement predicts reduced risk of incident diabetes and improved cardiovascular risk in prediabetic Asian Indian men participating in a 2-year lifestyle intervention program. Diabetes Care. 2014;37(11):3009–15. https://​doi.​org/​10.​2337/​dc14-0407.CrossRefPubMed
21.
go back to reference Flores M, Macias N, Rivera M, Lozada A, Barquera S, Rivera-Dommarco J, et al. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J Nutr. 2010;140(10):1869–73.CrossRef Flores M, Macias N, Rivera M, Lozada A, Barquera S, Rivera-Dommarco J, et al. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J Nutr. 2010;140(10):1869–73.CrossRef
22.
go back to reference Yang W, Dall TM, Beronjia K, Lin J, Semilla AP, Chakrabarti R, et al. Economic costs of diabetes in the US in 2017. Diabetes Care. 2018;41(5):917–28.CrossRef Yang W, Dall TM, Beronjia K, Lin J, Semilla AP, Chakrabarti R, et al. Economic costs of diabetes in the US in 2017. Diabetes Care. 2018;41(5):917–28.CrossRef
24.
go back to reference Katakami N, Katakami N, Omori K, Taya N, Arakawa S, Takahara M, et al. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):1–18.CrossRef Katakami N, Katakami N, Omori K, Taya N, Arakawa S, Takahara M, et al. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):1–18.CrossRef
25.
go back to reference Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):1–12.CrossRef Uddin GM, Zhang L, Shah S, Fukushima A, Wagg CS, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):1–12.CrossRef
26.
go back to reference Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.CrossRef Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.CrossRef
27.
go back to reference Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–11.CrossRef Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–11.CrossRef
28.
go back to reference Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–17.CrossRef Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–17.CrossRef
30.
go back to reference Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14.CrossRef Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606–14.CrossRef
31.
go back to reference Zeng Y, Mtintsilana A, Goedecke JH, Micklesfield LK, Olsson T, Chorell E. Alterations in the metabolism of phospholipids, bile acids and branched-chain amino acids predicts development of type 2 diabetes in black South African women: a prospective cohort study. Metabolism. 2019;95:57–64.CrossRef Zeng Y, Mtintsilana A, Goedecke JH, Micklesfield LK, Olsson T, Chorell E. Alterations in the metabolism of phospholipids, bile acids and branched-chain amino acids predicts development of type 2 diabetes in black South African women: a prospective cohort study. Metabolism. 2019;95:57–64.CrossRef
32.
go back to reference Godzien J, Kalaska B, Adamska-Patruno E, Siroka J, Ciborowski M, Kretowski A, et al. Oxidized glycerophosphatidylcholines in diabetes through non-targeted metabolomics: their annotation and biological meaning. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1120:62–70.CrossRef Godzien J, Kalaska B, Adamska-Patruno E, Siroka J, Ciborowski M, Kretowski A, et al. Oxidized glycerophosphatidylcholines in diabetes through non-targeted metabolomics: their annotation and biological meaning. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1120:62–70.CrossRef
35.
go back to reference Vangipurapu J, Fernandes Silva L, Kuulasmaa T, Smith U, Laakso M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care. 2020;43(6):1319–25.CrossRef Vangipurapu J, Fernandes Silva L, Kuulasmaa T, Smith U, Laakso M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care. 2020;43(6):1319–25.CrossRef
36.
go back to reference Khan SR, Manialawy Y, Obersterescu A, Cox BJ, Gunderson EP, Wheeler MB. Diminished sphingolipid metabolism, a hallmark of future type 2 diabetes pathogenesis, is linked to pancreatic b cell dysfunction pancreatic beta-cell dysfunction glucose insulin release cell death prognostic biomarker for T2D T2D development. IScience. 2020;23:101566. https://doi.org/10.1016/j.isci.CrossRefPubMedPubMedCentral Khan SR, Manialawy Y, Obersterescu A, Cox BJ, Gunderson EP, Wheeler MB. Diminished sphingolipid metabolism, a hallmark of future type 2 diabetes pathogenesis, is linked to pancreatic b cell dysfunction pancreatic beta-cell dysfunction glucose insulin release cell death prognostic biomarker for T2D T2D development. IScience. 2020;23:101566. https://​doi.​org/​10.​1016/​j.​isci.CrossRefPubMedPubMedCentral
37.
go back to reference Owei I, Umekwe N, Stentz F, Wan J, Dagogo-Jack S. Amino acid signature predictive of incident prediabetes: a case-control study nested within the longitudinal pathobiology of prediabetes in a biracial cohort. Metabolism. 2019;98:76–83.CrossRef Owei I, Umekwe N, Stentz F, Wan J, Dagogo-Jack S. Amino acid signature predictive of incident prediabetes: a case-control study nested within the longitudinal pathobiology of prediabetes in a biracial cohort. Metabolism. 2019;98:76–83.CrossRef
38.
go back to reference Ruiz-Arregui L, Ávila-Funes JA, Amieva H, Borges-Yáñez SA, Villa-Romero A, Aguilar-Navarro S, et al. The Coyoacán cohort study: design, methodology, and participants’ characteristics of a mexican study on nutritional and psychosocial markers of frailty. J Frailty Aging. 2013;2(2):68–76.PubMed Ruiz-Arregui L, Ávila-Funes JA, Amieva H, Borges-Yáñez SA, Villa-Romero A, Aguilar-Navarro S, et al. The Coyoacán cohort study: design, methodology, and participants’ characteristics of a mexican study on nutritional and psychosocial markers of frailty. J Frailty Aging. 2013;2(2):68–76.PubMed
39.
go back to reference Association AD. Standards of medical care in diabetes-2010. In: Diabetes care, vol. 33. Arlington: American Diabetes Association; 2010. p. S11. Association AD. Standards of medical care in diabetes-2010. In: Diabetes care, vol. 33. Arlington: American Diabetes Association; 2010. p. S11.
40.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef
41.
go back to reference Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. 2018;178(5):533–44.CrossRef Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. 2018;178(5):533–44.CrossRef
42.
go back to reference Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sport Exerc. 2003;35(8):1381–95.CrossRef Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sport Exerc. 2003;35(8):1381–95.CrossRef
43.
go back to reference Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2(5–6):231–7.CrossRef Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2(5–6):231–7.CrossRef
44.
go back to reference Inouye M, Kettunen J, Soininen P, Silander K, Ripatti S, Kumpula LS, et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol Syst Biol. 2010;6:441.CrossRef Inouye M, Kettunen J, Soininen P, Silander K, Ripatti S, Kumpula LS, et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol Syst Biol. 2010;6:441.CrossRef
45.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRef
47.
go back to reference Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish diabetes prevention study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.CrossRef Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish diabetes prevention study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.CrossRef
48.
go back to reference Duijzer G, Haveman-Nies A, Jansen SC, ter Beek J, van Bruggen R, Willink MGJ, et al. Effect and maintenance of the SLIMMER diabetes prevention lifestyle intervention in Dutch primary healthcare: a randomised controlled trial. Nutr Diabetes. 2017;7(5):e268.CrossRef Duijzer G, Haveman-Nies A, Jansen SC, ter Beek J, van Bruggen R, Willink MGJ, et al. Effect and maintenance of the SLIMMER diabetes prevention lifestyle intervention in Dutch primary healthcare: a randomised controlled trial. Nutr Diabetes. 2017;7(5):e268.CrossRef
49.
go back to reference Lu J, ManLam S, Wan Q, Shi L, Huo Y, Chen L, et al. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic Chinese adults. Diabetes Care. 2019;42(11):2117–26.CrossRef Lu J, ManLam S, Wan Q, Shi L, Huo Y, Chen L, et al. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic Chinese adults. Diabetes Care. 2019;42(11):2117–26.CrossRef
50.
go back to reference Kontush A. HDL particle number and size as predictors of cardiovascular disease. Front Pharmacol. 2015;6:218.CrossRef Kontush A. HDL particle number and size as predictors of cardiovascular disease. Front Pharmacol. 2015;6:218.CrossRef
52.
go back to reference Busher JT. Serum albumin and globulin. In: Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths; 1990. Busher JT. Serum albumin and globulin. In: Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths; 1990.
53.
go back to reference Jun JE, Lee SE, Lee YB, Jee JH, Bae JC, Jin SM, et al. Increase in serum albumin concentration is associated with prediabetes development and progression to overt diabetes independently of metabolic syndrome. PLoS ONE. 2017;12(4):e0176209.CrossRef Jun JE, Lee SE, Lee YB, Jee JH, Bae JC, Jin SM, et al. Increase in serum albumin concentration is associated with prediabetes development and progression to overt diabetes independently of metabolic syndrome. PLoS ONE. 2017;12(4):e0176209.CrossRef
54.
go back to reference Kunutsor SK, Khan H, Laukkanen JA. Serum albumin concentration and incident type 2 diabetes risk: new findings from a population-based cohort study. Diabetologia. 2015;58(5):961–7.CrossRef Kunutsor SK, Khan H, Laukkanen JA. Serum albumin concentration and incident type 2 diabetes risk: new findings from a population-based cohort study. Diabetologia. 2015;58(5):961–7.CrossRef
Metadata
Title
Clinical and metabolomic predictors of regression to normoglycemia in a population at intermediate cardiometabolic risk
Authors
Magdalena del Rocío Sevilla-González
Jordi Merino
Hortensia Moreno-Macias
Rosalba Rojas-Martínez
Donají Verónica Gómez-Velasco
Alisa K. Manning
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Type 2 Diabetes
Published in
Cardiovascular Diabetology / Issue 1/2021
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-021-01246-1

Other articles of this Issue 1/2021

Cardiovascular Diabetology 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.