Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2024

Open Access 01-12-2024 | Type 2 Diabetes | Research

Association of type 2 Diabetes Mellitus and bone mineral density: a two-sample Mendelian randomization study

Authors: Jianbin Guan, Tao Liu, Hao Chen, Kaitan Yang

Published in: BMC Musculoskeletal Disorders | Issue 1/2024

Login to get access

Abstract

Background

Observational studies have suggested that type 2 Diabetes Mellitus (DM2) is a potentially modifiable risk factor for lower BMD, but the causal relationship is unclear. This study aimed to examine whether the association of DM2 with lower BMD levels was causal by using Mendelian randomization (MR) analyses.

Methods

We collected genome-wide association study data for DM2 and BMD of total body and different skeletal sites from the IEU database. Subsequently, we performed a two-sample Mendelian randomization analysis using the Two Sample MR package.

Results

We identified a positive association between DM2 risk (61,714 DM2 cases and 596,424 controls) and total BMD, and other skeletal sites BMD, such as femoral neck BMD, ultra-distal forearm BMD and heel BMD. However, non-significant trends were observed for the effects of DM2 on lumbar-spine BMD.

Conclusion

In two-sample MR analyses, there was positive causal relationship between DM2 and BMD in both overall samples. In summary, while observational analyses consistently indicate a strong association between DM2 and low BMD, our MR analysis introduces a nuanced perspective. Contrary to the robust association observed in observational studies, our MR analysis suggests a significant link between DM2 and elevated BMD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ensrud KE, Crandall CJ. Osteoporosis[J]. Ann Intern Med. 2017;167(3):C17–C32.CrossRef Ensrud KE, Crandall CJ. Osteoporosis[J]. Ann Intern Med. 2017;167(3):C17–C32.CrossRef
3.
go back to reference Clynes MA, Harvey NC, Curtis EM, et al. The epidemiology of osteoporosis[J]. Br Med Bull. 2020;133(1):105–17.PubMed Clynes MA, Harvey NC, Curtis EM, et al. The epidemiology of osteoporosis[J]. Br Med Bull. 2020;133(1):105–17.PubMed
4.
go back to reference Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025[J]. J Bone Miner Res. 2007;22(3):465–75.PubMedCrossRef Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025[J]. J Bone Miner Res. 2007;22(3):465–75.PubMedCrossRef
5.
go back to reference Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol. 2022;123:14–21.PubMedCrossRef Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol. 2022;123:14–21.PubMedCrossRef
6.
go back to reference Polyzos SA, Anastasilakis AD, Efstathiadou ZA, et al. Postmenopausal osteoporosis coexisting with other metabolic diseases: treatment considerations[J]. Maturitas. 2021;147:19–25.PubMedCrossRef Polyzos SA, Anastasilakis AD, Efstathiadou ZA, et al. Postmenopausal osteoporosis coexisting with other metabolic diseases: treatment considerations[J]. Maturitas. 2021;147:19–25.PubMedCrossRef
7.
8.
go back to reference Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies[J]. Eur J Epidemiol. 2012;27(5):319–32.PubMedPubMedCentralCrossRef Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies[J]. Eur J Epidemiol. 2012;27(5):319–32.PubMedPubMedCentralCrossRef
9.
go back to reference Leidig-Bruckner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? [J]. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):493–S514.CrossRef Leidig-Bruckner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? [J]. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):493–S514.CrossRef
10.
11.
go back to reference Xue A, Wu Y, Zhu Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes[J]. Nat Commun. 2018;9(1):2941.PubMedPubMedCentralCrossRef Xue A, Wu Y, Zhu Z, et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes[J]. Nat Commun. 2018;9(1):2941.PubMedPubMedCentralCrossRef
12.
go back to reference Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body Bmd and assessment of age-specific effects[J]. Am J Hum Genet. 2018;102(1):88–102.PubMedPubMedCentralCrossRef Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body Bmd and assessment of age-specific effects[J]. Am J Hum Genet. 2018;102(1):88–102.PubMedPubMedCentralCrossRef
13.
go back to reference Burgess S, Davey SG, Davies NM, et al. Guidelines for performing mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res. 2019;4:186.PubMedCrossRef Burgess S, Davey SG, Davies NM, et al. Guidelines for performing mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res. 2019;4:186.PubMedCrossRef
14.
go back to reference Bowden J, Davey SG, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey SG, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
15.
go back to reference Hartwig FP, Davey SG, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef Hartwig FP, Davey SG, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef
16.
17.
go back to reference Shi Q, Wang Q, Wang Z, et al. Systemic inflammatory regulators and proliferative diabetic retinopathy: a bidirectional mendelian randomization study[J]. Front Immunol. 2023;14:1088778.PubMedPubMedCentralCrossRef Shi Q, Wang Q, Wang Z, et al. Systemic inflammatory regulators and proliferative diabetic retinopathy: a bidirectional mendelian randomization study[J]. Front Immunol. 2023;14:1088778.PubMedPubMedCentralCrossRef
18.
go back to reference Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis[J]. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis[J]. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef
19.
go back to reference Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes[J]. JAMA. 2011;305(21):2184–92.PubMedPubMedCentralCrossRef Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes[J]. JAMA. 2011;305(21):2184–92.PubMedPubMedCentralCrossRef
20.
go back to reference Shan PF, Wu XP, Zhang H, et al. Age-related bone mineral density, osteoporosis rate and risk of vertebral fracture in mainland Chinese women with type 2 diabetes mellitus[J]. J Endocrinol Invest. 2011;34(3):190–6.PubMedCrossRef Shan PF, Wu XP, Zhang H, et al. Age-related bone mineral density, osteoporosis rate and risk of vertebral fracture in mainland Chinese women with type 2 diabetes mellitus[J]. J Endocrinol Invest. 2011;34(3):190–6.PubMedCrossRef
21.
go back to reference Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone[J]. Annu Rev Physiol. 2012;74:87–105.PubMedCrossRef Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone[J]. Annu Rev Physiol. 2012;74:87–105.PubMedCrossRef
22.
go back to reference Javed F, Yu W, Thornton J, et al. Effect of fat on measurement of bone mineral density[J]. Int J Body Compos Res. 2009;7(1):37–40.PubMedPubMedCentral Javed F, Yu W, Thornton J, et al. Effect of fat on measurement of bone mineral density[J]. Int J Body Compos Res. 2009;7(1):37–40.PubMedPubMedCentral
23.
go back to reference Kim MW, Lee DH, Huh JW, et al. The impact of obesity on the accuracy of DXA BMD for DXA-equivalent BMD estimation[J]. BMC Musculoskelet Disord. 2022;23(1):1130.PubMedPubMedCentralCrossRef Kim MW, Lee DH, Huh JW, et al. The impact of obesity on the accuracy of DXA BMD for DXA-equivalent BMD estimation[J]. BMC Musculoskelet Disord. 2022;23(1):1130.PubMedPubMedCentralCrossRef
24.
go back to reference Zhang Z, Zhang Z, Pei L, et al. How high-fat diet affects bone in mice: a systematic review and meta-analysis[J]. Obes Rev. 2022;23(10):e13493.PubMedCrossRef Zhang Z, Zhang Z, Pei L, et al. How high-fat diet affects bone in mice: a systematic review and meta-analysis[J]. Obes Rev. 2022;23(10):e13493.PubMedCrossRef
25.
go back to reference Kanabrocki EL, Hermida RC, Wright M, et al. Circadian variation of serum leptin in healthy and diabetic men[J]. Chronobiol Int. 2001;18(2):273–83.PubMedCrossRef Kanabrocki EL, Hermida RC, Wright M, et al. Circadian variation of serum leptin in healthy and diabetic men[J]. Chronobiol Int. 2001;18(2):273–83.PubMedCrossRef
26.
go back to reference Hamrick MW, Della-Fera MA, Choi YH, et al. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice[J]. J Bone Miner Res. 2005;20(6):994–1001.PubMedCrossRef Hamrick MW, Della-Fera MA, Choi YH, et al. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice[J]. J Bone Miner Res. 2005;20(6):994–1001.PubMedCrossRef
27.
go back to reference Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice[J]. Regul Pept. 2000;92(1–3):73–8.PubMedCrossRef Steppan CM, Crawford DT, Chidsey-Frink KL, et al. Leptin is a potent stimulator of bone growth in ob/ob mice[J]. Regul Pept. 2000;92(1–3):73–8.PubMedCrossRef
28.
go back to reference Gordeladze JO, Drevon CA, Syversen U, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling[J]. J Cell Biochem. 2002;85(4):825–36.PubMedCrossRef Gordeladze JO, Drevon CA, Syversen U, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling[J]. J Cell Biochem. 2002;85(4):825–36.PubMedCrossRef
29.
go back to reference Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo[J]. J Endocrinol. 2002;175(2):405–15.PubMedCrossRef Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo[J]. J Endocrinol. 2002;175(2):405–15.PubMedCrossRef
30.
go back to reference Thommesen L, Stunes AK, Monjo M, et al. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism[J]. J Cell Biochem. 2006;99(3):824–34.PubMedCrossRef Thommesen L, Stunes AK, Monjo M, et al. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism[J]. J Cell Biochem. 2006;99(3):824–34.PubMedCrossRef
31.
go back to reference Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway[J]. J Bone Miner Res. 2006;21(10):1648–56.PubMedCrossRef Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway[J]. J Bone Miner Res. 2006;21(10):1648–56.PubMedCrossRef
32.
go back to reference Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast[J]. Biochem Biophys Res Commun. 2005;331(2):520–6.PubMedCrossRef Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast[J]. Biochem Biophys Res Commun. 2005;331(2):520–6.PubMedCrossRef
33.
go back to reference Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia[J]. J Clin Endocrinol Metab. 2001;86(5):1930–5.PubMedCrossRef Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia[J]. J Clin Endocrinol Metab. 2001;86(5):1930–5.PubMedCrossRef
34.
go back to reference Liu L, Shi Z, Ji X, et al. Adipokines, adiposity, and atherosclerosis[J]. Cell Mol Life Sci. 2022;79(5):272.PubMedCrossRef Liu L, Shi Z, Ji X, et al. Adipokines, adiposity, and atherosclerosis[J]. Cell Mol Life Sci. 2022;79(5):272.PubMedCrossRef
35.
go back to reference Tai TY, Chen CL, Tsai KS, et al. A longitudinal analysis of serum adiponectin levels and bone mineral density in postmenopausal women in Taiwan[J]. Sci Rep. 2022;12(1):8090.PubMedPubMedCentralCrossRef Tai TY, Chen CL, Tsai KS, et al. A longitudinal analysis of serum adiponectin levels and bone mineral density in postmenopausal women in Taiwan[J]. Sci Rep. 2022;12(1):8090.PubMedPubMedCentralCrossRef
36.
go back to reference Pun KK, Lau P, Ho PW. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line[J]. J Bone Miner Res. 1989;4(6):853–62.PubMedCrossRef Pun KK, Lau P, Ho PW. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line[J]. J Bone Miner Res. 1989;4(6):853–62.PubMedCrossRef
37.
go back to reference Mohan S, Kesavan C. Role of insulin-like growth factor-1 in the regulation of skeletal growth[J]. Curr Osteoporos Rep. 2012;10(2):178–86.PubMedCrossRef Mohan S, Kesavan C. Role of insulin-like growth factor-1 in the regulation of skeletal growth[J]. Curr Osteoporos Rep. 2012;10(2):178–86.PubMedCrossRef
38.
go back to reference Langlois JA, Rosen CJ, Visser M, et al. Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study[J]. J Clin Endocrinol Metab. 1998;83(12):4257–62.PubMed Langlois JA, Rosen CJ, Visser M, et al. Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study[J]. J Clin Endocrinol Metab. 1998;83(12):4257–62.PubMed
39.
go back to reference Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation[J]. Endocrinology. 2000;141(7):2674–82.PubMedCrossRef Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation[J]. Endocrinology. 2000;141(7):2674–82.PubMedCrossRef
41.
go back to reference Pramojanee SN, Phimphilai M, Chattipakorn N, et al. Possible roles of insulin signaling in osteoblasts[J]. Endocr Res. 2014;39(4):144–51.PubMedCrossRef Pramojanee SN, Phimphilai M, Chattipakorn N, et al. Possible roles of insulin signaling in osteoblasts[J]. Endocr Res. 2014;39(4):144–51.PubMedCrossRef
42.
go back to reference Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell. 2010;142(2):309–19.PubMedPubMedCentralCrossRef Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition[J]. Cell. 2010;142(2):309–19.PubMedPubMedCentralCrossRef
43.
go back to reference Thrailkill K, Bunn RC, Lumpkin CJ, et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone[J]. J Diabetes Res. 2014;2014:703589.PubMedPubMedCentralCrossRef Thrailkill K, Bunn RC, Lumpkin CJ, et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone[J]. J Diabetes Res. 2014;2014:703589.PubMedPubMedCentralCrossRef
44.
45.
go back to reference Wu S, Zhang Y, De Luca F. The effect of a high-calorie diet on bone growth is mediated by the insulin receptor[J]. Bone. 2019;122:166–75.PubMedCrossRef Wu S, Zhang Y, De Luca F. The effect of a high-calorie diet on bone growth is mediated by the insulin receptor[J]. Bone. 2019;122:166–75.PubMedCrossRef
46.
go back to reference Fulzele K, DiGirolamo DJ, Liu Z, et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action[J]. J Biol Chem. 2007;282(35):25649–58.PubMedCrossRef Fulzele K, DiGirolamo DJ, Liu Z, et al. Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action[J]. J Biol Chem. 2007;282(35):25649–58.PubMedCrossRef
47.
go back to reference Wasnich RD, Benfante RJ, Yano K, et al. Thiazide effect on the mineral content of bone[J]. N Engl J Med. 1983;309(6):344–7.PubMedCrossRef Wasnich RD, Benfante RJ, Yano K, et al. Thiazide effect on the mineral content of bone[J]. N Engl J Med. 1983;309(6):344–7.PubMedCrossRef
48.
go back to reference Aung K, Htay T. Thiazide diuretics and the risk of hip fracture[J]. Cochrane Database Syst Rev, 2011(10):D5185. Aung K, Htay T. Thiazide diuretics and the risk of hip fracture[J]. Cochrane Database Syst Rev, 2011(10):D5185.
49.
go back to reference Boquist L, Fahraeus B. The parathyroid glands of the Mongolian gerbil (Meriones unguiculatus)[J]. Pathol Eur. 1975;10(2):134–5. Boquist L, Fahraeus B. The parathyroid glands of the Mongolian gerbil (Meriones unguiculatus)[J]. Pathol Eur. 1975;10(2):134–5.
50.
go back to reference Schoofs MW, Sturkenboom MC, van der Klift M, et al. HMG-CoA reductase inhibitors and the risk of vertebral fracture[J]. J Bone Miner Res. 2004;19(9):1525–30.PubMedCrossRef Schoofs MW, Sturkenboom MC, van der Klift M, et al. HMG-CoA reductase inhibitors and the risk of vertebral fracture[J]. J Bone Miner Res. 2004;19(9):1525–30.PubMedCrossRef
51.
go back to reference Pritchard JM, Giangregorio LM, Atkinson SA, et al. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls[J]. Arthritis Care Res (Hoboken). 2012;64(1):83–91.PubMedCrossRef Pritchard JM, Giangregorio LM, Atkinson SA, et al. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls[J]. Arthritis Care Res (Hoboken). 2012;64(1):83–91.PubMedCrossRef
52.
go back to reference Pritchard JM, Giangregorio LM, Atkinson SA, et al. Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two-year longitudinal study[J]. BMC Musculoskelet Disord. 2013;14:114.PubMedPubMedCentralCrossRef Pritchard JM, Giangregorio LM, Atkinson SA, et al. Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two-year longitudinal study[J]. BMC Musculoskelet Disord. 2013;14:114.PubMedPubMedCentralCrossRef
53.
go back to reference Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility[J]. Nat Rev Endocrinol. 2017;13(4):208–19.PubMedCrossRef Napoli N, Chandran M, Pierroz DD, et al. Mechanisms of diabetes mellitus-induced bone fragility[J]. Nat Rev Endocrinol. 2017;13(4):208–19.PubMedCrossRef
54.
55.
go back to reference O’Gradaigh D, Debiram I, Love S, et al. A prospective study of discordance in diagnosis of osteoporosis using spine and proximal femur bone densitometry[J]. Osteoporos Int. 2003;14(1):13–8.PubMedCrossRef O’Gradaigh D, Debiram I, Love S, et al. A prospective study of discordance in diagnosis of osteoporosis using spine and proximal femur bone densitometry[J]. Osteoporos Int. 2003;14(1):13–8.PubMedCrossRef
56.
go back to reference Aoki TT, Grecu EO, Srinivas PR, et al. Prevalence of osteoporosis in women: variation with skeletal site of measurement of bone mineral density[J]. Endocr Pract. 2000;6(2):127–31.PubMedCrossRef Aoki TT, Grecu EO, Srinivas PR, et al. Prevalence of osteoporosis in women: variation with skeletal site of measurement of bone mineral density[J]. Endocr Pract. 2000;6(2):127–31.PubMedCrossRef
57.
go back to reference Blank RD, Malone DG, Christian RC, et al. Patient variables impact lumbar spine dual energy X-ray absorptiometry precision[J]. Osteoporos Int. 2006;17(5):768–74.PubMedCrossRef Blank RD, Malone DG, Christian RC, et al. Patient variables impact lumbar spine dual energy X-ray absorptiometry precision[J]. Osteoporos Int. 2006;17(5):768–74.PubMedCrossRef
59.
go back to reference Sun A, Hu J, Wang S, et al. Association of the visceral adiposity index with femur bone mineral density and osteoporosis among the U.S. older adults from NHANES 2005–2020: a cross-sectional study. Front Endocrinol (Lausanne). 2023;14:1231527.PubMedCrossRef Sun A, Hu J, Wang S, et al. Association of the visceral adiposity index with femur bone mineral density and osteoporosis among the U.S. older adults from NHANES 2005–2020: a cross-sectional study. Front Endocrinol (Lausanne). 2023;14:1231527.PubMedCrossRef
Metadata
Title
Association of type 2 Diabetes Mellitus and bone mineral density: a two-sample Mendelian randomization study
Authors
Jianbin Guan
Tao Liu
Hao Chen
Kaitan Yang
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Type 2 Diabetes
Published in
BMC Musculoskeletal Disorders / Issue 1/2024
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-024-07195-6

Other articles of this Issue 1/2024

BMC Musculoskeletal Disorders 1/2024 Go to the issue