Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Study protocol

Two-year outcomes after arthroscopic surgery compared to physical therapy for femoracetabular impingement: A protocol for a randomized clinical trial

Authors: Nancy S. Mansell, Daniel I. Rhon, Bryant G. Marchant, John M. Slevin, John L. Meyer

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

As the prevalence of hip pathology in the younger athletic population rises, the medical community continues to investigate effective intervention options. Femoracetabular impingement is the morphologically abnormal articulation of the femoral head against the acetabulum, and often implicated in pre-arthritic hip conditions of musculoskeletal nature. Arthroscopic surgical decompression and non-surgical rehabilitation programs focused on strengthening and stability are common interventions. However, they have never been directly compared in clinical trials.
The primary purpose of this study will be to assess the difference in outcomes between these 2 commonly utilized interventions for femoracetabular impingement.

Methods

The study will be a single site, non-inferiority, randomized controlled trial comparing two different treatment approaches (surgical and nonsurgical) for FAI. The enrollment goal is for a total of 80 subjects with a diagnosis of Femoracetabular impingement that are surgical candidates and have failed 6 weeks of conservative treatment. This will be a convenience sample of consecutive patients that are Tricare beneficiaries and seeking care at Madigan Army Medical Center. Patients that meet the criteria will be screened, provide written consent before enrollment, and then randomized into one of two arms (Group I = hip arthroscopy, Group II = physical therapy). Group I will undergo hip arthroscopy with or without labral repair. Group II will follow an impairment based physical therapy program consisting of 2 sessions per week for 6 weeks. The primary outcome will be the Hip Outcome Score and secondary measures will include the International Hip Outcome Tool and the Global Rating of Change. Measures will be taken at baseline, 6 months, 1 and 2 years. Hip-related healthcare utilization between both groups will also be assessed at the end of 2 years.

Discussion

The current evidence to support both surgical and conservative interventions for femoroacetabular impingement is based on low-level research. To date, none of these interventions have been directly compared in a randomized clinical trial. Clinical trials are needed to help establish the value of these interventions in the management of femoracetabular impingement and to help define appropriate clinical pathways.

Trial registration

NCT01993615 30 October 2013.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am. 2003;85-A(2):278–86.CrossRefPubMed Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am. 2003;85-A(2):278–86.CrossRefPubMed
2.
go back to reference Kalberer F, Sierra RJ, Madan SS, Ganz R, Leunig M. Ischial spine projection into the pelvis : a new sign for acetabular retroversion. Clin Orthop Relat Res. 2008;466(3):677–83.CrossRefPubMedPubMedCentral Kalberer F, Sierra RJ, Madan SS, Ganz R, Leunig M. Ischial spine projection into the pelvis : a new sign for acetabular retroversion. Clin Orthop Relat Res. 2008;466(3):677–83.CrossRefPubMedPubMedCentral
3.
go back to reference Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg. 1999;81(2):281–8.CrossRef Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg. 1999;81(2):281–8.CrossRef
4.
go back to reference Nouh MR, Schweitzer ME, Rybak L, Cohen J. Femoroacetabular impingement: can the alpha angle be estimated? AJR Am J Roentgenol. 2008;190(5):1260–2.CrossRefPubMed Nouh MR, Schweitzer ME, Rybak L, Cohen J. Femoroacetabular impingement: can the alpha angle be estimated? AJR Am J Roentgenol. 2008;190(5):1260–2.CrossRefPubMed
5.
go back to reference Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.CrossRefPubMed Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–52.CrossRefPubMed
6.
go back to reference Skendzel JG, Philippon MJ, Briggs KK, Goljan P. The effect of joint space on midterm outcomes after arthroscopic hip surgery for femoroacetabular impingement. Am J Sports Med. 2014;42(5):1127–33.CrossRefPubMed Skendzel JG, Philippon MJ, Briggs KK, Goljan P. The effect of joint space on midterm outcomes after arthroscopic hip surgery for femoroacetabular impingement. Am J Sports Med. 2014;42(5):1127–33.CrossRefPubMed
7.
go back to reference Smith TO, Simpson M, Ejindu V, Hing CB. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol. 2013;23(3):335–44.CrossRefPubMed Smith TO, Simpson M, Ejindu V, Hing CB. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol. 2013;23(3):335–44.CrossRefPubMed
8.
go back to reference Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40(12):2720–4.CrossRefPubMed Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40(12):2720–4.CrossRefPubMed
9.
go back to reference Schmitz MR, Campbell SE, Fajardo RS, Kadrmas WR. Identification of acetabular labral pathological changes in asymptomatic volunteers using optimized, noncontrast 1.5-T magnetic resonance imaging. Am J Sports Med. 2012;40(6):1337–41.CrossRefPubMed Schmitz MR, Campbell SE, Fajardo RS, Kadrmas WR. Identification of acetabular labral pathological changes in asymptomatic volunteers using optimized, noncontrast 1.5-T magnetic resonance imaging. Am J Sports Med. 2012;40(6):1337–41.CrossRefPubMed
10.
go back to reference Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–70.CrossRefPubMed Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–70.CrossRefPubMed
11.
go back to reference Diaz-Ledezma C, Novack T, Marin-Pena O, Parvizi J. The relevance of the radiological signs of acetabular retroversion among patients with femoroacetabular impingement. Bone Joint J. 2013;95-B(7):893–9.CrossRefPubMed Diaz-Ledezma C, Novack T, Marin-Pena O, Parvizi J. The relevance of the radiological signs of acetabular retroversion among patients with femoroacetabular impingement. Bone Joint J. 2013;95-B(7):893–9.CrossRefPubMed
13.
go back to reference Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg. 2009;91(2):162–9.CrossRef Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg. 2009;91(2):162–9.CrossRef
14.
go back to reference Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg. 2011;93(5):580–6.CrossRef Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg. 2011;93(5):580–6.CrossRef
15.
go back to reference MacFarlane RJ, Konan S, El-Huseinny M, Haddad FS. A review of outcomes of the surgical management of femoroacetabular impingement. Ann R Coll Surg Engl. 2014;96(5):331–8.CrossRefPubMedPubMedCentral MacFarlane RJ, Konan S, El-Huseinny M, Haddad FS. A review of outcomes of the surgical management of femoroacetabular impingement. Ann R Coll Surg Engl. 2014;96(5):331–8.CrossRefPubMedPubMedCentral
16.
go back to reference Hellman MD, Riff AJ, Frank RM, Haughom BD, Nho SJ. Operative treatment of femoroacetabular impingement. Phys Sportsmed. 2014;42(3):112–9.CrossRefPubMed Hellman MD, Riff AJ, Frank RM, Haughom BD, Nho SJ. Operative treatment of femoroacetabular impingement. Phys Sportsmed. 2014;42(3):112–9.CrossRefPubMed
17.
go back to reference Polat G, Dikmen G, Erdil M, Asik M. Arthroscopic treatment of femoroacetabular impingement: early outcomes. Acta Orthop Traumatol Turc. 2013;47(5):311–7.CrossRefPubMed Polat G, Dikmen G, Erdil M, Asik M. Arthroscopic treatment of femoroacetabular impingement: early outcomes. Acta Orthop Traumatol Turc. 2013;47(5):311–7.CrossRefPubMed
18.
go back to reference Zaltz I, Kelly BT, Larson CM, Leunig M, Bedi A. Surgical treatment of femoroacetabular impingement: what are the limits of hip arthroscopy? Arthroscopy. 2014;30(1):99–110.CrossRefPubMed Zaltz I, Kelly BT, Larson CM, Leunig M, Bedi A. Surgical treatment of femoroacetabular impingement: what are the limits of hip arthroscopy? Arthroscopy. 2014;30(1):99–110.CrossRefPubMed
19.
go back to reference Wright AA, Hegedus EJ. Augmented home exercise program for a 37-year-old female with a clinical presentation of femoroacetabular impingement. Man Ther. 2012;17(4):358–63.CrossRefPubMed Wright AA, Hegedus EJ. Augmented home exercise program for a 37-year-old female with a clinical presentation of femoroacetabular impingement. Man Ther. 2012;17(4):358–63.CrossRefPubMed
20.
go back to reference Byrd JW. Femoroacetabular impingement in athletes: current concepts. Am J Sports Med. 2014;42(3):737–51.CrossRefPubMed Byrd JW. Femoroacetabular impingement in athletes: current concepts. Am J Sports Med. 2014;42(3):737–51.CrossRefPubMed
21.
go back to reference Tranovich MJ, Salzler MJ, Enseki KR, Wright VJ. A review of femoroacetabular impingement and hip arthroscopy in the athlete. Phys Sportsmed. 2014;42(1):75–87.CrossRefPubMed Tranovich MJ, Salzler MJ, Enseki KR, Wright VJ. A review of femoroacetabular impingement and hip arthroscopy in the athlete. Phys Sportsmed. 2014;42(1):75–87.CrossRefPubMed
22.
go back to reference Wall PD, Fernandez M, Griffin DR, Foster NE. Nonoperative treatment for femoroacetabular impingement: a systematic review of the literature. PM R. 2013;5(5):418–26.CrossRefPubMed Wall PD, Fernandez M, Griffin DR, Foster NE. Nonoperative treatment for femoroacetabular impingement: a systematic review of the literature. PM R. 2013;5(5):418–26.CrossRefPubMed
23.
go back to reference Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390.CrossRefPubMedPubMedCentral Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390.CrossRefPubMedPubMedCentral
24.
go back to reference Sugarek NJ, Deyo RA, Holmes BC. Locus of control and beliefs about cancer in a multi-ethnic clinic population. Oncol Nurs Forum. 1988;15(4):481–6.PubMed Sugarek NJ, Deyo RA, Holmes BC. Locus of control and beliefs about cancer in a multi-ethnic clinic population. Oncol Nurs Forum. 1988;15(4):481–6.PubMed
25.
go back to reference Lodhia P, Slobogean GP, Noonan VK, Gilbart MK. Patient-reported outcome instruments for femoroacetabular impingement and hip labral pathology: a systematic review of the clinimetric evidence. Arthroscopy. 2011;27(2):279–86.CrossRefPubMed Lodhia P, Slobogean GP, Noonan VK, Gilbart MK. Patient-reported outcome instruments for femoroacetabular impingement and hip labral pathology: a systematic review of the clinimetric evidence. Arthroscopy. 2011;27(2):279–86.CrossRefPubMed
26.
go back to reference Mohtadi NG, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, et al. The Development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33). Arthroscopy. 2012;28(5):595–605. quiz 606-510 e591.CrossRefPubMed Mohtadi NG, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, et al. The Development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33). Arthroscopy. 2012;28(5):595–605. quiz 606-510 e591.CrossRefPubMed
27.
go back to reference Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–15.CrossRefPubMed Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–15.CrossRefPubMed
28.
go back to reference Juniper EF, Guyatt GH, Willan A, Griffith LE. Determining a minimal important change in a disease-specific Quality of Life Questionnaire. J Clin Epidemiol. 1994;47(1):81–7.CrossRefPubMed Juniper EF, Guyatt GH, Willan A, Griffith LE. Determining a minimal important change in a disease-specific Quality of Life Questionnaire. J Clin Epidemiol. 1994;47(1):81–7.CrossRefPubMed
29.
go back to reference Edell BH, Edington S, Herd B, O’Brien RM, Witkin G. Self-efficacy and self-motivation as predictors of weight loss. Addict Behav. 1987;12(1):63–6.CrossRefPubMed Edell BH, Edington S, Herd B, O’Brien RM, Witkin G. Self-efficacy and self-motivation as predictors of weight loss. Addict Behav. 1987;12(1):63–6.CrossRefPubMed
30.
go back to reference Jensen MP, Turner JA, Romano JM. What is the maximum number of levels needed in pain intensity measurement? Pain. 1994;58(3):387–92.CrossRefPubMed Jensen MP, Turner JA, Romano JM. What is the maximum number of levels needed in pain intensity measurement? Pain. 1994;58(3):387–92.CrossRefPubMed
31.
go back to reference Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L. The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med. 2000;23(4):351–65.CrossRefPubMed Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L. The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med. 2000;23(4):351–65.CrossRefPubMed
32.
go back to reference Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O’Neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med. 1997;20(6):589–605.CrossRefPubMed Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O’Neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med. 1997;20(6):589–605.CrossRefPubMed
33.
go back to reference Martin RL, Philippon MJ. Evidence of reliability and responsiveness for the hip outcome score. Arthroscopy. 2008;24(6):676–82.CrossRefPubMed Martin RL, Philippon MJ. Evidence of reliability and responsiveness for the hip outcome score. Arthroscopy. 2008;24(6):676–82.CrossRefPubMed
34.
go back to reference Kirkley A, Birmingham TB, Litchfield RB, Giffin JR, Willits KR, Wong CJ, et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008;359(11):1097–107.CrossRefPubMed Kirkley A, Birmingham TB, Litchfield RB, Giffin JR, Willits KR, Wong CJ, et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008;359(11):1097–107.CrossRefPubMed
35.
go back to reference Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368(18):1675–84.CrossRefPubMedPubMedCentral Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368(18):1675–84.CrossRefPubMedPubMedCentral
36.
go back to reference Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson AN, Blood EA, et al. Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med. 2007;356(22):2257–70.CrossRefPubMedPubMedCentral Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson AN, Blood EA, et al. Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med. 2007;356(22):2257–70.CrossRefPubMedPubMedCentral
37.
go back to reference Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32.CrossRefPubMed Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32.CrossRefPubMed
38.
39.
go back to reference Palmer AJ, Thomas GE, Pollard TC, Rombach I, Taylor A, Arden N, et al. The feasibility of performing a randomised controlled trial for femoroacetabular impingement surgery. Bone Joint Res. 2013;2(2):33–40.CrossRefPubMedPubMedCentral Palmer AJ, Thomas GE, Pollard TC, Rombach I, Taylor A, Arden N, et al. The feasibility of performing a randomised controlled trial for femoroacetabular impingement surgery. Bone Joint Res. 2013;2(2):33–40.CrossRefPubMedPubMedCentral
Metadata
Title
Two-year outcomes after arthroscopic surgery compared to physical therapy for femoracetabular impingement: A protocol for a randomized clinical trial
Authors
Nancy S. Mansell
Daniel I. Rhon
Bryant G. Marchant
John M. Slevin
John L. Meyer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0914-1

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue