Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research Article

A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion

Authors: Michael Putzer, Stefan Auer, William Malpica, Franz Suess, Sebastian Dendorfer

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

There is a wide range of mechanical properties of spinal ligaments documented in literature. Due to the fact that ligaments contribute in stabilizing the spine by limiting excessive intersegmental motion, those properties are of particular interest for the implementation in musculoskeletal models. The aim of this study was to investigate the effect of varying ligament stiffness on the kinematic behaviour of the lumbar spine.

Methods

A musculoskeletal model with a detailed lumbar spine was modified according to fluoroscopic recordings and corresponding data files of three different subjects. For flexion, inverse dynamics analysis with a variation of the ligament stiffness matrix were conducted. The influence of several degrees of ligament stiffness on the lumbar spine model were investigated by tracking ligament forces, disc forces and resulting moments generated by the ligaments. Additionally, the kinematics of the motion segments were evaluated.

Results

An increase of ligament stiffness resulted in an increase of ligament and disc forces, whereas the relative change of disc force increased at a higher rate at the L4/L5 level (19 %) than at the L3/L4 (10 %) level in a fully flexed posture. The same behaviour applied to measured moments with 67 % and 45 %. As a consequence, the motion deflected to the lower levels of the lumbar spine and the lower discs had to resist an increase in loading.

Conclusions

Higher values of ligament stiffness over all lumbar levels could lead to a shift of the loading and the motion between segments to the lower lumbar levels. This could lead to an increased risk for the lower lumbar parts.
Literature
1.
go back to reference White AA, Panjabi MM. Clinical biomechanics of the spine, vol. 2. Philadelphia: Lippincott; 1990. White AA, Panjabi MM. Clinical biomechanics of the spine, vol. 2. Philadelphia: Lippincott; 1990.
2.
go back to reference Schultz AB, Haderspeck-Grib K, Sinkora G, Warwick DN. Quantitative studies of the flexion-relaxation phenomenon in the back muscles. J Orthop Res. 1985; 3:189–97.CrossRefPubMed Schultz AB, Haderspeck-Grib K, Sinkora G, Warwick DN. Quantitative studies of the flexion-relaxation phenomenon in the back muscles. J Orthop Res. 1985; 3:189–97.CrossRefPubMed
3.
go back to reference Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW. Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech. 1993; 26:427–38.CrossRefPubMed Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW. Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech. 1993; 26:427–38.CrossRefPubMed
4.
go back to reference de Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB. A generic detailed rigid-body lumbar spine model. J Biomech. 2007; 40:1219–27.CrossRefPubMed de Zee M, Hansen L, Wong C, Rasmussen J, Simonsen EB. A generic detailed rigid-body lumbar spine model. J Biomech. 2007; 40:1219–27.CrossRefPubMed
5.
go back to reference Han KS, Zander T, Taylor WR, Rohlmann A. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med Eng Phys. 2012; 34:709–16.CrossRefPubMed Han KS, Zander T, Taylor WR, Rohlmann A. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med Eng Phys. 2012; 34:709–16.CrossRefPubMed
6.
go back to reference Han KS, Rohlmann A, Zander T, Taylor WR. Lumbar spinal loads vary with body height and weight. Med Eng Phys. 2013; 35:969–77.CrossRefPubMed Han KS, Rohlmann A, Zander T, Taylor WR. Lumbar spinal loads vary with body height and weight. Med Eng Phys. 2013; 35:969–77.CrossRefPubMed
7.
go back to reference Han KS, Rohlmann A, Kim K, Cho KW, Kim YH. Effect of ligament stiffness on spinal loads and muscle forces in flexed positions. Int J Precis Eng Man. 2012; 13:2233–8.CrossRef Han KS, Rohlmann A, Kim K, Cho KW, Kim YH. Effect of ligament stiffness on spinal loads and muscle forces in flexed positions. Int J Precis Eng Man. 2012; 13:2233–8.CrossRef
8.
go back to reference Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al.Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985; 18:167–76.CrossRefPubMed Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al.Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985; 18:167–76.CrossRefPubMed
9.
go back to reference Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992; 25:1351–6.CrossRefPubMed Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992; 25:1351–6.CrossRefPubMed
10.
go back to reference Neumann P, Keller TS, Ekström L, Perry L, Hansson TH, Spengler DM. Mechanical properties of the human lumbar anterior longitudinal ligament. J Biomech. 1992; 25:1185–94.CrossRefPubMed Neumann P, Keller TS, Ekström L, Perry L, Hansson TH, Spengler DM. Mechanical properties of the human lumbar anterior longitudinal ligament. J Biomech. 1992; 25:1185–94.CrossRefPubMed
11.
go back to reference Robertson D, Willardson R, Parajuli D, Cannon A, Bowden AE. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect. J Mech Behav Biomed Mater. 2013; 17:34–43.CrossRefPubMed Robertson D, Willardson R, Parajuli D, Cannon A, Bowden AE. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect. J Mech Behav Biomed Mater. 2013; 17:34–43.CrossRefPubMed
12.
go back to reference Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Th. 2006; 14:1100–11.CrossRef Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Th. 2006; 14:1100–11.CrossRef
13.
go back to reference Andersen MS, Damsgaard M, Rasmussen J. Force-dependent kinematics: a new analysis method for non-conforming joints. In: 13th Bienn Int Symp Comput Simul Biomech. Belgium: Leuven: 2011. p. 2. Andersen MS, Damsgaard M, Rasmussen J. Force-dependent kinematics: a new analysis method for non-conforming joints. In: 13th Bienn Int Symp Comput Simul Biomech. Belgium: Leuven: 2011. p. 2.
14.
go back to reference Panjabi MM. Centers and angles of rotation of body joints: a study of errors and optimization. J Biomech. 1979; 12:911–20.CrossRefPubMed Panjabi MM. Centers and angles of rotation of body joints: a study of errors and optimization. J Biomech. 1979; 12:911–20.CrossRefPubMed
15.
go back to reference Pearcy MJ, Bogduk N. Instantaneous axes of rotation of the lumbar intervertebral joints. Spine. 1988; 13:1033–41.CrossRefPubMed Pearcy MJ, Bogduk N. Instantaneous axes of rotation of the lumbar intervertebral joints. Spine. 1988; 13:1033–41.CrossRefPubMed
16.
go back to reference Winter DA. Biomechanics and motor control of human movement, 4th ed. Hoboken: Wiley; 2009.CrossRef Winter DA. Biomechanics and motor control of human movement, 4th ed. Hoboken: Wiley; 2009.CrossRef
17.
go back to reference Schmidt TA, An HS, Lim TH, Nowicki BH, Haughton VM. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus. Spine. 1998; 23:2167–73.CrossRefPubMed Schmidt TA, An HS, Lim TH, Nowicki BH, Haughton VM. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus. Spine. 1998; 23:2167–73.CrossRefPubMed
18.
go back to reference Wilke H, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin Biomech (Bristol, Avon). 2001; 16 Suppl 1:111–26.CrossRef Wilke H, Neef P, Hinz B, Seidel H, Claes L. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin Biomech (Bristol, Avon). 2001; 16 Suppl 1:111–26.CrossRef
Metadata
Title
A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion
Authors
Michael Putzer
Stefan Auer
William Malpica
Franz Suess
Sebastian Dendorfer
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0942-x

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue