Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2024

Open Access 01-12-2024 | Research

Estimating cutoff values for diagnostic tests to achieve target specificity using extreme value theory

Authors: Sierra Pugh, Bailey K. Fosdick, Mary Nehring, Emily N. Gallichotte, Sue VandeWoude, Ander Wilson

Published in: BMC Medical Research Methodology | Issue 1/2024

Login to get access

Abstract

Background

Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false positives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such as specificity, is challenging for new tests because of limited validation data with known disease status. While there is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme quantiles from limited validation data and the resulting test characteristics in the disease testing context.

Methods

We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorbent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May and December of 2020.

Results

We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is preferred when prevalence is higher and resulted in less variable prevalence estimation.

Discussion

While commonly used, the normal based methods showed considerable bias compared to the empirical and extreme value theory-based methods.

Conclusions

When determining disease testing cutoffs from small training data samples, we recommend using the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting a lower specificity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public policy implications. BMJ Glob Health. 2022;7(5):e008477.CrossRefPubMed Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public policy implications. BMJ Glob Health. 2022;7(5):e008477.CrossRefPubMed
2.
go back to reference Takahashi S, Greenhouse B, Rodríguez-Barraquer I. Are seroprevalence estimates for severe acute respiratory syndrome coronavirus 2 biased? J Infect Dis. 2020;222(11):1772–5.CrossRefPubMed Takahashi S, Greenhouse B, Rodríguez-Barraquer I. Are seroprevalence estimates for severe acute respiratory syndrome coronavirus 2 biased? J Infect Dis. 2020;222(11):1772–5.CrossRefPubMed
3.
go back to reference Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, et al. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun. 2021;12(1):113.CrossRefPubMedPubMedCentralADS Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, et al. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun. 2021;12(1):113.CrossRefPubMedPubMedCentralADS
5.
go back to reference Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for systematic statistical computation of immunogenicity cut points. AAPS J. 2017;19(5):1487–98.CrossRefPubMed Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for systematic statistical computation of immunogenicity cut points. AAPS J. 2017;19(5):1487–98.CrossRefPubMed
6.
go back to reference Hoffman D, Berger M. Statistical considerations for calculation of immunogenicity screening assay cut points. J Immunol Methods. 2011;373(1–2):200–8.CrossRefPubMed Hoffman D, Berger M. Statistical considerations for calculation of immunogenicity screening assay cut points. J Immunol Methods. 2011;373(1–2):200–8.CrossRefPubMed
7.
go back to reference Zhang L, Zhang JJ, Kubiak RJ, Yang H. Statistical methods and tool for cut point analysis in immunogenicity assays. J Immunol Methods. 2013;389(1–2):79–87.CrossRefPubMed Zhang L, Zhang JJ, Kubiak RJ, Yang H. Statistical methods and tool for cut point analysis in immunogenicity assays. J Immunol Methods. 2013;389(1–2):79–87.CrossRefPubMed
8.
go back to reference Pickands III J. Statistical inference using extreme order statistics. Ann Stat. 1975;3(1):119–31. Pickands III J. Statistical inference using extreme order statistics. Ann Stat. 1975;3(1):119–31.
9.
go back to reference Cooley D, Nychka D, Naveau P. Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc. 2007;102(479):824–40.MathSciNetCrossRef Cooley D, Nychka D, Naveau P. Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc. 2007;102(479):824–40.MathSciNetCrossRef
11.
go back to reference Kiriliouk A, Rootzén H, Segers J, Wadsworth JL. Peaks over thresholds modeling with multivariate generalized Pareto distributions. Technometrics. 2019;61(1):123–35.MathSciNetCrossRef Kiriliouk A, Rootzén H, Segers J, Wadsworth JL. Peaks over thresholds modeling with multivariate generalized Pareto distributions. Technometrics. 2019;61(1):123–35.MathSciNetCrossRef
12.
go back to reference Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021;16(6):3114–40.CrossRefPubMed Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021;16(6):3114–40.CrossRefPubMed
13.
go back to reference Cohen B, Doblas D, Andrews N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine. 2008;26(50):6392–7.CrossRefPubMed Cohen B, Doblas D, Andrews N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine. 2008;26(50):6392–7.CrossRefPubMed
14.
go back to reference Eyal O, Olshevsky U, Lustig S, Paran N, Halevy M, Schneider P, et al. Development of a tissue-culture-based enzyme-immunoassay method for the quantitation of anti-vaccinia-neutralizing antibodies in human sera. J Virol Methods. 2005;130(1–2):15–21.CrossRefPubMed Eyal O, Olshevsky U, Lustig S, Paran N, Halevy M, Schneider P, et al. Development of a tissue-culture-based enzyme-immunoassay method for the quantitation of anti-vaccinia-neutralizing antibodies in human sera. J Virol Methods. 2005;130(1–2):15–21.CrossRefPubMed
15.
go back to reference Gallichotte EN, Nehring M, Young MC, Pugh S, Sexton NR, Fitzmeyer E, et al. Durable antibody responses in staff at two long-term care facilities, during and post SARS-CoV-2 outbreaks. Microbiol Spectr. 2021;9(1):e00224-21.CrossRef Gallichotte EN, Nehring M, Young MC, Pugh S, Sexton NR, Fitzmeyer E, et al. Durable antibody responses in staff at two long-term care facilities, during and post SARS-CoV-2 outbreaks. Microbiol Spectr. 2021;9(1):e00224-21.CrossRef
16.
go back to reference Nehring M, Pugh S, Dihle T, Gallichotte E, Nett T, Weber E, et al. Laboratory-based SARS-CoV-2 receptor-binding domain serologic assays perform with equivalent sensitivity and specificity to commercial FDA-EUA approved tests. Viruses. 2023;15(1):106.CrossRef Nehring M, Pugh S, Dihle T, Gallichotte E, Nett T, Weber E, et al. Laboratory-based SARS-CoV-2 receptor-binding domain serologic assays perform with equivalent sensitivity and specificity to commercial FDA-EUA approved tests. Viruses. 2023;15(1):106.CrossRef
17.
go back to reference Jordan G, Staack RF. An alternative data transformation approach for ADA cut point determination: Why not use a Weibull transformation? AAPS J. 2021;23(5):97.CrossRefPubMed Jordan G, Staack RF. An alternative data transformation approach for ADA cut point determination: Why not use a Weibull transformation? AAPS J. 2021;23(5):97.CrossRefPubMed
18.
go back to reference Mire-Sluis AR, Barrett YC, Devanarayan V, Koren E, Liu H, Maia M, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289(1–2):1–16.CrossRefPubMed Mire-Sluis AR, Barrett YC, Devanarayan V, Koren E, Liu H, Maia M, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289(1–2):1–16.CrossRefPubMed
20.
go back to reference Rosbjerg D, Madsen H, Rasmussen PF. Prediction in partial duration series with generalized Pareto-distributed exceedances. Water Resour Res. 1992;28(11):3001–10.CrossRefADS Rosbjerg D, Madsen H, Rasmussen PF. Prediction in partial duration series with generalized Pareto-distributed exceedances. Water Resour Res. 1992;28(11):3001–10.CrossRefADS
21.
go back to reference DuMouchel WH. Estimating the stable index \(\alpha\) in order to measure tail thickness: A critique. Ann Stat. 1983;11(4):1019–31. DuMouchel WH. Estimating the stable index \(\alpha\) in order to measure tail thickness: A critique. Ann Stat. 1983;11(4):1019–31.
22.
go back to reference Durán-Rosal AM, Carbonero M, Gutiérrez PA, Hervás-Martínez C. A mixed distribution to fix the threshold for Peak-Over-Threshold wave height estimation. Sci Rep. 2022;12(1):17327.CrossRefPubMedPubMedCentralADS Durán-Rosal AM, Carbonero M, Gutiérrez PA, Hervás-Martínez C. A mixed distribution to fix the threshold for Peak-Over-Threshold wave height estimation. Sci Rep. 2022;12(1):17327.CrossRefPubMedPubMedCentralADS
23.
go back to reference Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRefPubMed Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.CrossRefPubMed
24.
go back to reference Blostein M, Miljkovic T. On modeling left-truncated loss data using mixtures of distributions. Insur Math Econ. 2019;85:35–46.MathSciNetCrossRef Blostein M, Miljkovic T. On modeling left-truncated loss data using mixtures of distributions. Insur Math Econ. 2019;85:35–46.MathSciNetCrossRef
26.
go back to reference Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45(1–2):23–41.CrossRefPubMed Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med. 2000;45(1–2):23–41.CrossRefPubMed
27.
go back to reference Hajian-Tilaki K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res. 2018;27(8):2374–83.MathSciNetCrossRefPubMed Hajian-Tilaki K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res. 2018;27(8):2374–83.MathSciNetCrossRefPubMed
28.
go back to reference Linnet K, Brandt E. Assessing diagnostic tests once an optimal cutoff point has been selected. Clin Chem. 1986;32(7):1341–6.CrossRefPubMed Linnet K, Brandt E. Assessing diagnostic tests once an optimal cutoff point has been selected. Clin Chem. 1986;32(7):1341–6.CrossRefPubMed
29.
go back to reference Cheng X, Liu Y, Wang J, Chen Y, Robertson AG, Zhang X, et al. cSurvival: A web resource for biomarker interactions in cancer outcomes and in cell lines. Brief Bioinforma. 2022;23(3):bbac090. Cheng X, Liu Y, Wang J, Chen Y, Robertson AG, Zhang X, et al. cSurvival: A web resource for biomarker interactions in cancer outcomes and in cell lines. Brief Bioinforma. 2022;23(3):bbac090.
30.
go back to reference Lan L, Cheng X, Xing L, Zhang X. BOSS–Biomarker Optimal Segmentation System. 2023. arXiv preprint arXiv:230509090. Lan L, Cheng X, Xing L, Zhang X. BOSS–Biomarker Optimal Segmentation System. 2023. arXiv preprint arXiv:230509090.
31.
go back to reference Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics. 1992;48(1):73–85. Lausen B, Schumacher M. Maximally selected rank statistics. Biometrics. 1992;48(1):73–85.
32.
go back to reference Bottomley C, Otiende M, Uyoga S, Gallagher K, Kagucia E, Etyang A, et al. Quantifying previous SARS-CoV-2 infection through mixture modelling of antibody levels. Nat Commun. 2021;12(1):6196.CrossRefPubMedPubMedCentralADS Bottomley C, Otiende M, Uyoga S, Gallagher K, Kagucia E, Etyang A, et al. Quantifying previous SARS-CoV-2 infection through mixture modelling of antibody levels. Nat Commun. 2021;12(1):6196.CrossRefPubMedPubMedCentralADS
33.
go back to reference Bouman JA, Riou J, Bonhoeffer S, Regoes RR. Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches. PLoS Comput Biol. 2021;17(2):e1008728.CrossRefPubMedPubMedCentralADS Bouman JA, Riou J, Bonhoeffer S, Regoes RR. Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches. PLoS Comput Biol. 2021;17(2):e1008728.CrossRefPubMedPubMedCentralADS
34.
go back to reference Hitchings MDT, Patel EU, Khan R, Srikrishnan AK, Anderson M, Kumar KS, et al. A mixture model to estimate SARS-CoV-2 seroprevalence in Chennai. India Am J Epidemiol. 2023;192(9):1552–61.CrossRefPubMed Hitchings MDT, Patel EU, Khan R, Srikrishnan AK, Anderson M, Kumar KS, et al. A mixture model to estimate SARS-CoV-2 seroprevalence in Chennai. India Am J Epidemiol. 2023;192(9):1552–61.CrossRefPubMed
35.
go back to reference Schaarschmidt F, Hofmann M, Jaki T, Grün B, Hothorn LA. Statistical approaches for the determination of cut points in anti-drug antibody bioassays. J Immunol Methods. 2015;418:84–100.CrossRefPubMed Schaarschmidt F, Hofmann M, Jaki T, Grün B, Hothorn LA. Statistical approaches for the determination of cut points in anti-drug antibody bioassays. J Immunol Methods. 2015;418:84–100.CrossRefPubMed
36.
go back to reference Vink MA, van de Kassteele J, Wallinga J, Teunis PF, Bogaards JA. Estimating seroprevalence of human papillomavirus type 16 using a mixture model with smoothed age-dependent mixing proportions. Epidemiology. 2015;26(1):8–16.CrossRefPubMed Vink MA, van de Kassteele J, Wallinga J, Teunis PF, Bogaards JA. Estimating seroprevalence of human papillomavirus type 16 using a mixture model with smoothed age-dependent mixing proportions. Epidemiology. 2015;26(1):8–16.CrossRefPubMed
37.
go back to reference Kostoulas P, Eusebi P, Hartnack S. Diagnostic accuracy estimates for COVID-19 real-time polymerase chain reaction and lateral flow immunoassay tests with Bayesian latent-class models. Am J Epidemiol. 2021;190(8):1689–95.CrossRefPubMedPubMedCentral Kostoulas P, Eusebi P, Hartnack S. Diagnostic accuracy estimates for COVID-19 real-time polymerase chain reaction and lateral flow immunoassay tests with Bayesian latent-class models. Am J Epidemiol. 2021;190(8):1689–95.CrossRefPubMedPubMedCentral
38.
go back to reference Laurin E, Morrison D, Gardner IA, Siah A, Powell JF, Kamaitis M. Bayesian latent class analysis of ELISA and RT-rPCR diagnostic accuracy for subclinical Renibacterium salmoninarum infection in Atlantic salmon (Salmo salar) broodstock. J Fish Dis. 2019;42(2):303–13.CrossRefPubMed Laurin E, Morrison D, Gardner IA, Siah A, Powell JF, Kamaitis M. Bayesian latent class analysis of ELISA and RT-rPCR diagnostic accuracy for subclinical Renibacterium salmoninarum infection in Atlantic salmon (Salmo salar) broodstock. J Fish Dis. 2019;42(2):303–13.CrossRefPubMed
39.
go back to reference Symons R, Beath K, Dangis A, Lefever S, Smismans A, De Bruecker Y, et al. A statistical framework to estimate diagnostic test performance for COVID-19. Clin Radiol. 2021;76(1):75-e1.CrossRef Symons R, Beath K, Dangis A, Lefever S, Smismans A, De Bruecker Y, et al. A statistical framework to estimate diagnostic test performance for COVID-19. Clin Radiol. 2021;76(1):75-e1.CrossRef
40.
go back to reference Jain R, Chlamtac I. The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations. Commun ACM. 1985;28(10):1076–85.CrossRef Jain R, Chlamtac I. The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations. Commun ACM. 1985;28(10):1076–85.CrossRef
41.
go back to reference Karnin Z, Lang K, Liberty E, Optimal quantile approximation in streams. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE; 2016. p. 71–8. Karnin Z, Lang K, Liberty E, Optimal quantile approximation in streams. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE; 2016. p. 71–8.
Metadata
Title
Estimating cutoff values for diagnostic tests to achieve target specificity using extreme value theory
Authors
Sierra Pugh
Bailey K. Fosdick
Mary Nehring
Emily N. Gallichotte
Sue VandeWoude
Ander Wilson
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2024
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-023-02139-5

Other articles of this Issue 1/2024

BMC Medical Research Methodology 1/2024 Go to the issue