Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model

Authors: Dorothea Leonhäuser, Katja Stollenwerk, Volker Seifarth, Isabella M. Zraik, Michael Vogt, Pramod K. Srinivasan, Rene H. Tolba, Joachim O. Grosse

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model.

Methods

Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy.

Results

Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period.

Conclusions

We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.
Literature
1.
go back to reference Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.CrossRefPubMed Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–5.CrossRefPubMed
2.
go back to reference Reddy PP, Barrieras DJ, Wilson G, Bagli DJ, McLorie GA, Khoury AE, et al. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol. 2000;164:936–41.CrossRefPubMed Reddy PP, Barrieras DJ, Wilson G, Bagli DJ, McLorie GA, Khoury AE, et al. Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol. 2000;164:936–41.CrossRefPubMed
3.
go back to reference Bolland F, Southgate J. Bio-engineering urothelial cells for bladder tissue transplant. Expert Opin Biol Ther. 2008;8:1039–49.CrossRefPubMed Bolland F, Southgate J. Bio-engineering urothelial cells for bladder tissue transplant. Expert Opin Biol Ther. 2008;8:1039–49.CrossRefPubMed
4.
go back to reference Caione P, Boldrini R, Salerno A, Nappo SG. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int. 2012;28:421–8.CrossRefPubMed Caione P, Boldrini R, Salerno A, Nappo SG. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int. 2012;28:421–8.CrossRefPubMed
5.
go back to reference Garthwaite M, Hinley J, Cross W, Warwick RM, Ambrose A, Hardaker H, et al. Use of donor bladder tissues for in vitro research. BJU Int. 2014;113:160–6.CrossRefPubMed Garthwaite M, Hinley J, Cross W, Warwick RM, Ambrose A, Hardaker H, et al. Use of donor bladder tissues for in vitro research. BJU Int. 2014;113:160–6.CrossRefPubMed
6.
go back to reference Renninger M, Amend B, Seibold J, Feil G, Stenzl A, Sievert KD. Regeneration of the lower urinary tract. Clinical applications and future outlook. In: Gorodetsky R, Schafer R, editors. Stem cell-based tissue repair. Cambridge: The Royal Society of Chemistry; 2011. p. 324–45. Renninger M, Amend B, Seibold J, Feil G, Stenzl A, Sievert KD. Regeneration of the lower urinary tract. Clinical applications and future outlook. In: Gorodetsky R, Schafer R, editors. Stem cell-based tissue repair. Cambridge: The Royal Society of Chemistry; 2011. p. 324–45.
7.
go back to reference Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.CrossRefPubMed Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6.CrossRefPubMed
8.
go back to reference Apodaca G, Balestreire E, Birder LA. The uroepithelial-associated sensory web. Kidney Int. 2007;72:1057–64.CrossRefPubMed Apodaca G, Balestreire E, Birder LA. The uroepithelial-associated sensory web. Kidney Int. 2007;72:1057–64.CrossRefPubMed
10.
go back to reference Zarghooni S, Wunsch J, Bodenbenner M, Brueggmann D, Grando SA, Schwantes U, et al. Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci. 2007;80:2308–13.CrossRefPubMed Zarghooni S, Wunsch J, Bodenbenner M, Brueggmann D, Grando SA, Schwantes U, et al. Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci. 2007;80:2308–13.CrossRefPubMed
11.
go back to reference Biers SM, Venn SN, Greenwell TJ. The past, present and future of augmentation cystoplasty. BJU Int. 2012;109:1280–93.CrossRefPubMed Biers SM, Venn SN, Greenwell TJ. The past, present and future of augmentation cystoplasty. BJU Int. 2012;109:1280–93.CrossRefPubMed
12.
13.
go back to reference Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol. 2000;18:56–61.CrossRefPubMed Yokoyama T, Huard J, Chancellor MB. Myoblast therapy for stress urinary incontinence and bladder dysfunction. World J Urol. 2000;18:56–61.CrossRefPubMed
14.
15.
go back to reference Ribeiro-Filho LA, Sievert K-D. Acellular matrix in urethral reconstruction. Adv Drug Deliv Rev. 2015;82–83:38–46.CrossRefPubMed Ribeiro-Filho LA, Sievert K-D. Acellular matrix in urethral reconstruction. Adv Drug Deliv Rev. 2015;82–83:38–46.CrossRefPubMed
16.
go back to reference Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue engineering of the bladder-reality or myth? a systematic review. J Urol. 2014;192:1035–42.CrossRefPubMed Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue engineering of the bladder-reality or myth? a systematic review. J Urol. 2014;192:1035–42.CrossRefPubMed
17.
go back to reference Davis N, Mc Guire B, Callanan A, Flood H, Mc Gloughlin T. Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery. J Urol. 2010;184:2246–53.CrossRefPubMed Davis N, Mc Guire B, Callanan A, Flood H, Mc Gloughlin T. Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery. J Urol. 2010;184:2246–53.CrossRefPubMed
18.
go back to reference Feil G, Christ-Adler M, Maurer S, Corvin S, Rennekampff H-O, Krug J, et al. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur Urol. 2006;50:1330–7.CrossRefPubMed Feil G, Christ-Adler M, Maurer S, Corvin S, Rennekampff H-O, Krug J, et al. Investigations of urothelial cells seeded on commercially available small intestine submucosa. Eur Urol. 2006;50:1330–7.CrossRefPubMed
19.
go back to reference Lin H-K, Madihally SV, Palmer B, Frimberger D, Fung K-M, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev. 2015;82–83:47–63.CrossRefPubMed Lin H-K, Madihally SV, Palmer B, Frimberger D, Fung K-M, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev. 2015;82–83:47–63.CrossRefPubMed
20.
go back to reference Evren S, Loai Y, Antoon R, Islam S, Yeger H, Moore K, et al. Urinary bladder tissue engineering using natural scaffolds in a porcine model: role of toll-like receptors and impact of biomimetic molecules. Cell Tissues Organs. 2010;192:250–61. Evren S, Loai Y, Antoon R, Islam S, Yeger H, Moore K, et al. Urinary bladder tissue engineering using natural scaffolds in a porcine model: role of toll-like receptors and impact of biomimetic molecules. Cell Tissues Organs. 2010;192:250–61.
21.
go back to reference Feil G, Daum L, Amend B, Maurer S, Renninger M, Vaegler M, et al. From tissue engineering to regenerative medicine in urology—the potential and the pitfalls. Adv Drug Deliv Rev. 2011;63:375–8.CrossRefPubMed Feil G, Daum L, Amend B, Maurer S, Renninger M, Vaegler M, et al. From tissue engineering to regenerative medicine in urology—the potential and the pitfalls. Adv Drug Deliv Rev. 2011;63:375–8.CrossRefPubMed
22.
go back to reference Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A. 2006;78A:157–67.CrossRef Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, et al. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A. 2006;78A:157–67.CrossRef
23.
go back to reference Yao C, Hedrick M, Pareek G, Renzulli J, Haleblian G, Webster TJ. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. Int J Nanomed. 2013;8:3285–96. Yao C, Hedrick M, Pareek G, Renzulli J, Haleblian G, Webster TJ. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. Int J Nanomed. 2013;8:3285–96.
24.
go back to reference Yu D-S, Lee CF, Chen HI, Chang SY. Bladder wall grafting in rats using salt-modified and collagen-coated polycaprolactone scaffolds: preliminary report. Int J Urol. 2007;14:939–44.CrossRefPubMed Yu D-S, Lee CF, Chen HI, Chang SY. Bladder wall grafting in rats using salt-modified and collagen-coated polycaprolactone scaffolds: preliminary report. Int J Urol. 2007;14:939–44.CrossRefPubMed
25.
go back to reference Brauers A, Jung PK, Thissen H, Pfannschmidt O, Michaeli W, Hoecker H, et al. Biocompatibility, cell adhesion, and degradation of surface-modified biodegradable polymers designed for the upper urinary tract. Tech Urol. 1998;4:214–20.PubMed Brauers A, Jung PK, Thissen H, Pfannschmidt O, Michaeli W, Hoecker H, et al. Biocompatibility, cell adhesion, and degradation of surface-modified biodegradable polymers designed for the upper urinary tract. Tech Urol. 1998;4:214–20.PubMed
26.
go back to reference Jurgens WJ, Kroeze RJ, Bank RA, Ritt MJPF, Helder MN. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J Orthop Res. 2011;29:853–60.CrossRefPubMed Jurgens WJ, Kroeze RJ, Bank RA, Ritt MJPF, Helder MN. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J Orthop Res. 2011;29:853–60.CrossRefPubMed
27.
go back to reference Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13:2971–9.CrossRefPubMed Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13:2971–9.CrossRefPubMed
28.
go back to reference Fuehrmann T, Hillen LM, Montzka K, Woeltje M, Brook GA. Cell-Cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials. 2010;31:7705–15.CrossRef Fuehrmann T, Hillen LM, Montzka K, Woeltje M, Brook GA. Cell-Cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials. 2010;31:7705–15.CrossRef
29.
go back to reference Krenning G, Moonen JR, van Luyn MJA, Harmsen MC. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials. 2008;29:3703–11.CrossRefPubMed Krenning G, Moonen JR, van Luyn MJA, Harmsen MC. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials. 2008;29:3703–11.CrossRefPubMed
30.
go back to reference Kroehne V, Heschel I, Schuegner F, Lasrich D, Bartsch JW, Jockusch H. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med. 2008;12:1640–8.CrossRefPubMedPubMedCentral Kroehne V, Heschel I, Schuegner F, Lasrich D, Bartsch JW, Jockusch H. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. J Cell Mol Med. 2008;12:1640–8.CrossRefPubMedPubMedCentral
31.
go back to reference Saxena AK, Faraj KA, Damen WF, van Kuppevelt TH, Weijnen R, Ainoedhofer H, et al. Comparison of collagen scaffold tubes for possible esophagus organ tissue engineering applications: in-situ omental implantation study in an ovine model. Eur Surg. 2010;42:309–13.CrossRef Saxena AK, Faraj KA, Damen WF, van Kuppevelt TH, Weijnen R, Ainoedhofer H, et al. Comparison of collagen scaffold tubes for possible esophagus organ tissue engineering applications: in-situ omental implantation study in an ovine model. Eur Surg. 2010;42:309–13.CrossRef
32.
go back to reference Montzka K, Laeufer T, Becker C, Grosse J, Heidenreich A. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. BJU Int. 2011;107:1974–81.CrossRefPubMed Montzka K, Laeufer T, Becker C, Grosse J, Heidenreich A. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. BJU Int. 2011;107:1974–81.CrossRefPubMed
33.
go back to reference Brehmer B, Rohrmann D, Rau G, Jakse G. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int. 2006;97:829–36.CrossRefPubMed Brehmer B, Rohrmann D, Rau G, Jakse G. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU Int. 2006;97:829–36.CrossRefPubMed
34.
go back to reference Brehmer B, Rohrmann D, Becker C, Rau G, Jakse G. Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol Int. 2007;78:23–9.CrossRefPubMed Brehmer B, Rohrmann D, Becker C, Rau G, Jakse G. Different types of scaffolds for reconstruction of the urinary tract by tissue engineering. Urol Int. 2007;78:23–9.CrossRefPubMed
35.
go back to reference Huppertz ND, Tolba RH, Grosse JO. Micturition in Gottingen minipigs. first reference invivo data for urological research and review of literature. Lab Anim. 2015;49:336–44.CrossRefPubMed Huppertz ND, Tolba RH, Grosse JO. Micturition in Gottingen minipigs. first reference invivo data for urological research and review of literature. Lab Anim. 2015;49:336–44.CrossRefPubMed
36.
go back to reference Huppertz ND, Kirschner-Hermanns R, Tolba RH, Grosse JO. Telemetric monitoring of bladder function in female Gottingen minipigs. BJU Int. 2015;116:823–32.CrossRefPubMed Huppertz ND, Kirschner-Hermanns R, Tolba RH, Grosse JO. Telemetric monitoring of bladder function in female Gottingen minipigs. BJU Int. 2015;116:823–32.CrossRefPubMed
37.
go back to reference Leonhäuser D, Vogt M, Tolba RH, Grosse JO. Potential in two types of collagen scaffolds for urological tissue engineering applications—are there differrences in growth behaviour of juvenile and adult vesical cells? J Biomater Appl. 2016;30(961–973):38. Leonhäuser D, Vogt M, Tolba RH, Grosse JO. Potential in two types of collagen scaffolds for urological tissue engineering applications—are there differrences in growth behaviour of juvenile and adult vesical cells? J Biomater Appl. 2016;30(961–973):38.
38.
go back to reference Song L, Murphy SV, Yang B, Xu Y, Zhang Y, Atala A. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng Part B. 2014;20:163–72.CrossRef Song L, Murphy SV, Yang B, Xu Y, Zhang Y, Atala A. Bladder acellular matrix and its application in bladder augmentation. Tissue Eng Part B. 2014;20:163–72.CrossRef
39.
go back to reference Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.CrossRefPubMed Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.CrossRefPubMed
40.
go back to reference Lin HK, Cowan R, Moore P, Zhang YY, Yang Q, Peterson JA, et al. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol. 2004;171:1348–52.CrossRefPubMed Lin HK, Cowan R, Moore P, Zhang YY, Yang Q, Peterson JA, et al. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol. 2004;171:1348–52.CrossRefPubMed
41.
go back to reference Akbal C, Lee SD, Packer SC, Davis MM, Rink RC, Kaefer M. Bladder augmentation with acellular dermal biomatrix in a diseased animal model. J Urol. 2006;176:1706–11.CrossRefPubMed Akbal C, Lee SD, Packer SC, Davis MM, Rink RC, Kaefer M. Bladder augmentation with acellular dermal biomatrix in a diseased animal model. J Urol. 2006;176:1706–11.CrossRefPubMed
42.
go back to reference Roelofs LAJ, Kortmann BBM, Oosterwijk E, Eggink AJ, Tiemessen DM, Crevels AJ, et al. Tissue engineering of diseased bladder using a collagen scaffold in a bladder exstrophy model. BJU Int. 2014;114:447–57.PubMed Roelofs LAJ, Kortmann BBM, Oosterwijk E, Eggink AJ, Tiemessen DM, Crevels AJ, et al. Tissue engineering of diseased bladder using a collagen scaffold in a bladder exstrophy model. BJU Int. 2014;114:447–57.PubMed
Metadata
Title
Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model
Authors
Dorothea Leonhäuser
Katja Stollenwerk
Volker Seifarth
Isabella M. Zraik
Michael Vogt
Pramod K. Srinivasan
Rene H. Tolba
Joachim O. Grosse
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-1112-5

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.