Skip to main content
Top
Published in: Medical Oncology 2/2010

01-06-2010 | Original Paper

Twilight effects of low doses of ionizing radiation on cellular systems: a bird’s eye view on current concepts and research

Authors: Ilaria Postiglione, Angela Chiaviello, Giuseppe Palumbo

Published in: Medical Oncology | Issue 2/2010

Login to get access

Abstract

The debate about the health risks from low doses of radiation is vigorous and often acrimonious since many years and does not appear to weaken. Being far from completeness, this review presents only a bird’s eye view on current concepts and research in the field. It is organized and divided in two parts. The first is dedicated to molecular responses determined by radiation-induced DNA ruptures. It focuses its attention on molecular pathways that are activated by ATM and tries to describe the variegated functions and specific roles of Chk2 and p53 and other proteins in sensing, promoting and executing DNA repair. The second part is more concerned with the risk associated with exposure to low dose radiation and possible effects that the radiation-affected cell may undergo. These effects include induction of apoptosis and mitotic catastrophe, bystander effect and genomic instability, senescence and hormetic response. Current hypotheses and research on these issues are briefly discussed.
Literature
1.
go back to reference Grubbé EH. Priority in the therapeutic use of X-rays. Radiology. 1933;21:156–62. Grubbé EH. Priority in the therapeutic use of X-rays. Radiology. 1933;21:156–62.
2.
go back to reference Albers-Schonberg H. Uber line bischer unbekannte Wirkukng der Rontgenstnrahlen auf den organismus der tiere. Munch Med Wochenschr. 1903;50:1859–60. Albers-Schonberg H. Uber line bischer unbekannte Wirkukng der Rontgenstnrahlen auf den organismus der tiere. Munch Med Wochenschr. 1903;50:1859–60.
3.
go back to reference Heineke H. Ueber die Einwirkung der Röntgenstrahlen auf Tiere. Munch Med Wochenschr. 1903;50:2090–2. Heineke H. Ueber die Einwirkung der Röntgenstrahlen auf Tiere. Munch Med Wochenschr. 1903;50:2090–2.
5.
go back to reference Martland HS, Humphries RE. Osteogenic sarcoma in dial painters using luminous paint. Arch Pathol Lab Med. 1929;7:406–17. Martland HS, Humphries RE. Osteogenic sarcoma in dial painters using luminous paint. Arch Pathol Lab Med. 1929;7:406–17.
14.
go back to reference Haimovitz-Friedman A, Khan C, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes in human leukemia cells to generate ceramide and induce apoptosis. J Exp Med. 1994;180:525–35. doi:10.1084/jem.180.2.525.PubMedCrossRef Haimovitz-Friedman A, Khan C, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes in human leukemia cells to generate ceramide and induce apoptosis. J Exp Med. 1994;180:525–35. doi:10.​1084/​jem.​180.​2.​525.PubMedCrossRef
15.
go back to reference Michael JM, Lavin MF, Watters DJ. Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res. 1997;57:3600–5.PubMed Michael JM, Lavin MF, Watters DJ. Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res. 1997;57:3600–5.PubMed
17.
go back to reference Bartek J, Falck J, Lukas J. CHK2 kinase—a busy messenger. Nat Rev Mol Cell Biol. 2001;2:877–86.PubMedCrossRef Bartek J, Falck J, Lukas J. CHK2 kinase—a busy messenger. Nat Rev Mol Cell Biol. 2001;2:877–86.PubMedCrossRef
20.
go back to reference Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem. 2001;276:38224–30.PubMed Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem. 2001;276:38224–30.PubMed
24.
go back to reference Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature. 2000;406:210–5. doi:10.1038/35018134.PubMedCrossRef Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature. 2000;406:210–5. doi:10.​1038/​35018134.PubMedCrossRef
25.
go back to reference Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1138–9. doi:10.1126/science.1140321.CrossRef Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1138–9. doi:10.​1126/​science.​1140321.CrossRef
29.
go back to reference Dalal SN, Schweitzer CM, Gan J, DeCaprio JA. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol. 1999;19:4465–79.PubMed Dalal SN, Schweitzer CM, Gan J, DeCaprio JA. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol. 1999;19:4465–79.PubMed
30.
go back to reference Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS. Characterisation of the interaction between PCNA and Gadd45. Oncogene. 1995;10:2427–33.PubMed Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS. Characterisation of the interaction between PCNA and Gadd45. Oncogene. 1995;10:2427–33.PubMed
31.
go back to reference Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994;266:1376–80.PubMedCrossRef Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994;266:1376–80.PubMedCrossRef
32.
go back to reference Chen IT, Akamatsu M, Smith ML, Lung FD, Duba D, Roller PP, et al. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene. 1996;12:595–607.PubMed Chen IT, Akamatsu M, Smith ML, Lung FD, Duba D, Roller PP, et al. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene. 1996;12:595–607.PubMed
37.
40.
go back to reference Dalal SN, Yaffe MB, DeCaprio JA. 14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle. 2004;3:672–7.PubMed Dalal SN, Yaffe MB, DeCaprio JA. 14-3-3 family members act coordinately to regulate mitotic progression. Cell Cycle. 2004;3:672–7.PubMed
47.
go back to reference Chen IT, Smith ML, O’Connor PM, Fornace AJ. Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA. Oncogene. 1995;11:1931–7.PubMed Chen IT, Smith ML, O’Connor PM, Fornace AJ. Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA. Oncogene. 1995;11:1931–7.PubMed
48.
49.
51.
go back to reference Jaberaboansari A, Nelson GB, Roti Roti JL, Wheeler KT. Post-irradiation alterations of neuronal chromatin structure. Radiat Res. 1998;114:94–104. doi:10.2307/3577147.CrossRef Jaberaboansari A, Nelson GB, Roti Roti JL, Wheeler KT. Post-irradiation alterations of neuronal chromatin structure. Radiat Res. 1998;114:94–104. doi:10.​2307/​3577147.CrossRef
52.
go back to reference Malyapa RS, Wright WD, Taylor YC, Roti Roti JL. DNA supercoiling changes and nuclear matrix-associated proteins: possible role in oncogene-mediated radioresistance. Int J Radiat Oncol Biol Phys. 1996;35:963–73. doi:10.1016/0360-3016(96)00211-8.PubMed Malyapa RS, Wright WD, Taylor YC, Roti Roti JL. DNA supercoiling changes and nuclear matrix-associated proteins: possible role in oncogene-mediated radioresistance. Int J Radiat Oncol Biol Phys. 1996;35:963–73. doi:10.​1016/​0360-3016(96)00211-8.PubMed
55.
go back to reference Iijima K, Ohara M, Seki R, Tauchi H. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res (Tokyo). 2008;49:451–64. doi:10.1269/jrr.08065.CrossRef Iijima K, Ohara M, Seki R, Tauchi H. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res (Tokyo). 2008;49:451–64. doi:10.​1269/​jrr.​08065.CrossRef
56.
go back to reference Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–9. doi:10.1038/ncb1004.PubMedCrossRef Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–9. doi:10.​1038/​ncb1004.PubMedCrossRef
66.
go back to reference Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA. 2002;99:8173–8. doi:10.1073/pnas.122228699.PubMedCrossRef Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA. 2002;99:8173–8. doi:10.​1073/​pnas.​122228699.PubMedCrossRef
69.
go back to reference Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yater JR, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93:477–86. doi:10.1016/S0092-8674(00)81175-7.PubMedCrossRef Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yater JR, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998;93:477–86. doi:10.​1016/​S0092-8674(00)81175-7.PubMedCrossRef
71.
73.
go back to reference Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, DiBiase L, et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a Brca1 transgene. Oncogene. 1999;18:7900–7. doi:10.1038/sj.onc.1203334.PubMedCrossRef Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, DiBiase L, et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a Brca1 transgene. Oncogene. 1999;18:7900–7. doi:10.​1038/​sj.​onc.​1203334.PubMedCrossRef
75.
go back to reference Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development. 1998;125:4007–17.PubMed Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development. 1998;125:4007–17.PubMed
76.
go back to reference Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998;17:5497–500. doi:10.1093/emboj/17.18.5497.PubMedCrossRef Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998;17:5497–500. doi:10.​1093/​emboj/​17.​18.​5497.PubMedCrossRef
77.
79.
go back to reference Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146:1–27. doi:10.2307/3579391.PubMedCrossRef Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146:1–27. doi:10.​2307/​3579391.PubMedCrossRef
81.
go back to reference Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137:S68–97. doi:10.2307/3578893.PubMedCrossRef Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137:S68–97. doi:10.​2307/​3578893.PubMedCrossRef
83.
go back to reference Schull WJ. Radioepidemiology of the A-bomb survivors. Health Phys. 1996;70:798–803.PubMed Schull WJ. Radioepidemiology of the A-bomb survivors. Health Phys. 1996;70:798–803.PubMed
85.
go back to reference United Nations. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the general assembly with scientific annexes. Volume II: Effects. Annex I, Epidemiological evaluation of radiation induced cancer. New York: United Nations, 2000. United Nations. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the general assembly with scientific annexes. Volume II: Effects. Annex I, Epidemiological evaluation of radiation induced cancer. New York: United Nations, 2000.
87.
go back to reference Pollycove M. Low dose linearity: the rule or the exception. BELLE Newsl. 1997;6:13–8. Pollycove M. Low dose linearity: the rule or the exception. BELLE Newsl. 1997;6:13–8.
88.
go back to reference National Council on Radiation Protection. Limitation of exposure to ionizing radiation: report 116. Bethesda, MD: National Council on Radiation Protection; 1993. National Council on Radiation Protection. Limitation of exposure to ionizing radiation: report 116. Bethesda, MD: National Council on Radiation Protection; 1993.
89.
go back to reference International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. Ottawa: ICRP Publication; 1990. International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. Ottawa: ICRP Publication; 1990.
90.
go back to reference Scott BR, Di Palma J. Sparsely ionizing diagnostic and background radiations are likely preventing cancer and other genomic-instability-associated diseases. Dose Response. 2006;5:230–55.PubMedCrossRef Scott BR, Di Palma J. Sparsely ionizing diagnostic and background radiations are likely preventing cancer and other genomic-instability-associated diseases. Dose Response. 2006;5:230–55.PubMedCrossRef
91.
93.
go back to reference United Nations. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly with scientific annexes. Volume II: effects. Annex G, Biological effects at low radiation doses. 2000; New York: United Nations. United Nations. Sources and effects of ionizing radiation. UNSCEAR 2000 Report to the General Assembly with scientific annexes. Volume II: effects. Annex G, Biological effects at low radiation doses. 2000; New York: United Nations.
94.
go back to reference Becker K. Threshold or no threshold, that is the question. Radiat Prot Dosim. 1997;71:3–5. Becker K. Threshold or no threshold, that is the question. Radiat Prot Dosim. 1997;71:3–5.
97.
go back to reference Health Physics Society. Radiation risk in perspective: position statement of the Health Physics Society. In: Health Physics Society Directory and handbook, 1998–1999. McLean, VA: Health Physics Society; 1998. p. 238–244. Health Physics Society. Radiation risk in perspective: position statement of the Health Physics Society. In: Health Physics Society Directory and handbook, 1998–1999. McLean, VA: Health Physics Society; 1998. p. 238–244.
98.
go back to reference Cai L, Liu SZ. Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int J Radiat Biol. 1990;58:187–94.PubMedCrossRef Cai L, Liu SZ. Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int J Radiat Biol. 1990;58:187–94.PubMedCrossRef
101.
go back to reference Shadley JD, Afzal V, Wolff S. Characterization of the adaptive response to ionizing radiationinduced by low doses of x-rays to human lymphocytes. Radiat Res. 1987;111:511–7. doi:10.2307/3576936.PubMedCrossRef Shadley JD, Afzal V, Wolff S. Characterization of the adaptive response to ionizing radiationinduced by low doses of x-rays to human lymphocytes. Radiat Res. 1987;111:511–7. doi:10.​2307/​3576936.PubMedCrossRef
103.
go back to reference Hooker AM, Bhat M, Day TK, Lane JM, Swinburne SJ, Morley AA, et al. The linear nothreshold model does not hold for low-dose ionizing radiation. Radiat Res. 2004;162:447–52. doi:10.1667/RR3228.PubMedCrossRef Hooker AM, Bhat M, Day TK, Lane JM, Swinburne SJ, Morley AA, et al. The linear nothreshold model does not hold for low-dose ionizing radiation. Radiat Res. 2004;162:447–52. doi:10.​1667/​RR3228.PubMedCrossRef
104.
go back to reference Scott BR. Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model. BELLE Newsl. 2005;13:22–7. Scott BR. Low-dose radiation risk extrapolation fallacy associated with the linear-no-threshold model. BELLE Newsl. 2005;13:22–7.
105.
go back to reference Wang GJ, Li X-K, Sakai K, Cai L. Low-dose radiation and its clinical implications: diabetes. BELLE Newsl. 2005;13:12–21. Wang GJ, Li X-K, Sakai K, Cai L. Low-dose radiation and its clinical implications: diabetes. BELLE Newsl. 2005;13:12–21.
106.
go back to reference Pollycove M, Feinendegen LE. Biologic response to low doses of ionizing radiation: detriment versus hormesis. Part 2. Dose responses of organisms. J Nucl Med. 2001;42:26N–37N.PubMed Pollycove M, Feinendegen LE. Biologic response to low doses of ionizing radiation: detriment versus hormesis. Part 2. Dose responses of organisms. J Nucl Med. 2001;42:26N–37N.PubMed
108.
go back to reference Cohen BL. Cancer risk from low-level radiation. Am J Roentgenol. 2002;179:1137–43. Cohen BL. Cancer risk from low-level radiation. Am J Roentgenol. 2002;179:1137–43.
111.
go back to reference Mitchel RE, Jackson JS, McCann RA, Boreham DR. The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat Res. 1999;152:273–9. doi:10.2307/3580327.PubMedCrossRef Mitchel RE, Jackson JS, McCann RA, Boreham DR. The adaptive response modifies latency for radiation-induced myeloid leukemia in CBA/H mice. Radiat Res. 1999;152:273–9. doi:10.​2307/​3580327.PubMedCrossRef
117.
go back to reference Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52:6394–6.PubMed Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52:6394–6.PubMed
118.
go back to reference Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extra-nuclear target. Radiat Res. 1996;145:260–7. doi:10.2307/3578980.PubMedCrossRef Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extra-nuclear target. Radiat Res. 1996;145:260–7. doi:10.​2307/​3578980.PubMedCrossRef
119.
go back to reference Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non irradiated cells. Proc Natl Acad Sci USA. 2001;98:473–8. doi:10.1073/pnas.011417098.PubMedCrossRef Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non irradiated cells. Proc Natl Acad Sci USA. 2001;98:473–8. doi:10.​1073/​pnas.​011417098.PubMedCrossRef
120.
122.
go back to reference Mothersill C, Seymour CB. Cell–cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 1998;149:256–62. doi:10.2307/3579958.PubMedCrossRef Mothersill C, Seymour CB. Cell–cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 1998;149:256–62. doi:10.​2307/​3579958.PubMedCrossRef
126.
go back to reference Shao C, Furusawa Y, Aoki M, Ando K. Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiat Res. 2003;160:318–23. doi:10.1667/RR3044.PubMedCrossRef Shao C, Furusawa Y, Aoki M, Ando K. Role of gap junctional intercellular communication in radiation-induced bystander effects in human fibroblasts. Radiat Res. 2003;160:318–23. doi:10.​1667/​RR3044.PubMedCrossRef
128.
go back to reference Hamada N, Matsumoto H, Hara T, Kobayashi Y. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res (Tokyo). 2007;48:87–95. doi:10.1269/jrr.06084.CrossRef Hamada N, Matsumoto H, Hara T, Kobayashi Y. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res (Tokyo). 2007;48:87–95. doi:10.​1269/​jrr.​06084.CrossRef
129.
go back to reference Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, et al. Genetic and epigenetic features in radiation sensitivity Part I: cell signalling in radiation response. Eur J Nucl Med Mol Imaging. 2005;32:229–46. doi:10.1007/s00259-004-1730-7. Review.PubMedCrossRef Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, et al. Genetic and epigenetic features in radiation sensitivity Part I: cell signalling in radiation response. Eur J Nucl Med Mol Imaging. 2005;32:229–46. doi:10.​1007/​s00259-004-1730-7. Review.PubMedCrossRef
130.
go back to reference Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene. 2003;22:5854–948. Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene. 2003;22:5854–948.
132.
go back to reference Hamada N, Funayama T, Wada S, Sakashita T, Kakizaki T, Ni M, et al. LET-dependent survival of irradiated normal human fibroblasts and their descendents. Radiat Res. 2006;166:24–30. doi:10.1667/RR3579.1.PubMedCrossRef Hamada N, Funayama T, Wada S, Sakashita T, Kakizaki T, Ni M, et al. LET-dependent survival of irradiated normal human fibroblasts and their descendents. Radiat Res. 2006;166:24–30. doi:10.​1667/​RR3579.​1.PubMedCrossRef
133.
go back to reference Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W. Persistent oxidative stress in chromosomally unstable cells. Cancer Res. 2003;63:3107–11.PubMed Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W. Persistent oxidative stress in chromosomally unstable cells. Cancer Res. 2003;63:3107–11.PubMed
136.
go back to reference Moore SR, Marsden S, Macdonald D, Mitchell S, Folkard M, Michael B, et al. Genomic instability in human lymphocytes irradiated with individual charged particles: involvement of tumor necrosis factor alpha in irradiated cells but not bystander cells. Radiat Res. 2005;163:183–90. doi:10.1667/RR3298.PubMedCrossRef Moore SR, Marsden S, Macdonald D, Mitchell S, Folkard M, Michael B, et al. Genomic instability in human lymphocytes irradiated with individual charged particles: involvement of tumor necrosis factor alpha in irradiated cells but not bystander cells. Radiat Res. 2005;163:183–90. doi:10.​1667/​RR3298.PubMedCrossRef
137.
139.
141.
go back to reference Aldridge DR, Radford IR. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res. 1998;58:2817–24.PubMed Aldridge DR, Radford IR. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res. 1998;58:2817–24.PubMed
145.
go back to reference Bracey TS, Miller JC, Paraskeva C. Radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene. 1995;10:2391–6.PubMed Bracey TS, Miller JC, Paraskeva C. Radiation induced apoptosis in human colorectal adenoma and carcinoma cell lines can occur in the absence of wild type p53. Oncogene. 1995;10:2391–6.PubMed
146.
go back to reference Guillouf C, Rosselli F, Sjin RT, Moustacchi E, Hofman B, Liebermann DA. Role of a mutant p53 protein in apoptosis: characterization of a function independent of transcriptional trans-activation. Int J Oncol. 1998;13:107–14.PubMed Guillouf C, Rosselli F, Sjin RT, Moustacchi E, Hofman B, Liebermann DA. Role of a mutant p53 protein in apoptosis: characterization of a function independent of transcriptional trans-activation. Int J Oncol. 1998;13:107–14.PubMed
147.
go back to reference Merritt A, Allen TD, Potten CS, Hickman JA. Apoptois in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after g-irradiation. Oncogene. 1997;14:2759–66. doi:10.1038/sj.onc.1201126.PubMedCrossRef Merritt A, Allen TD, Potten CS, Hickman JA. Apoptois in small intestinal epithelia from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after g-irradiation. Oncogene. 1997;14:2759–66. doi:10.​1038/​sj.​onc.​1201126.PubMedCrossRef
148.
go back to reference Castedo M, Perfettini JL, Roumierh T, Valent A, Raslova H, Yakushijin K, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene. 2004;23:4362–70. doi:10.1038/sj.onc.1207572.PubMedCrossRef Castedo M, Perfettini JL, Roumierh T, Valent A, Raslova H, Yakushijin K, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene. 2004;23:4362–70. doi:10.​1038/​sj.​onc.​1207572.PubMedCrossRef
149.
go back to reference Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res. 2007;13:5501–8.CrossRef Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res. 2007;13:5501–8.CrossRef
151.
go back to reference Ianzini F, Bertoldo A, Kosmacek EA, Phillips SL, Mackey MA. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int. 2006;6:11–8. doi:10.1186/1475-2867-6-11.PubMedCrossRef Ianzini F, Bertoldo A, Kosmacek EA, Phillips SL, Mackey MA. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int. 2006;6:11–8. doi:10.​1186/​1475-2867-6-11.PubMedCrossRef
152.
go back to reference Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 2009;30:432–9. doi:10.1093/carcin/bgp008.PubMedCrossRef Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 2009;30:432–9. doi:10.​1093/​carcin/​bgp008.PubMedCrossRef
154.
go back to reference Campisi J. Cellular senescence as a tumour-suppressor mechanism. Trends Cell Biol. 2001;11:27–31. Campisi J. Cellular senescence as a tumour-suppressor mechanism. Trends Cell Biol. 2001;11:27–31.
159.
go back to reference Chu K, Teele N, Dewey MW, Albright N, Dewey WC. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14–3-3sigma and CDKN1A (p21) knockout cell lines. Radiat Res. 2004;162:270–86. doi:10.1667/RR3221.PubMedCrossRef Chu K, Teele N, Dewey MW, Albright N, Dewey WC. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14–3-3sigma and CDKN1A (p21) knockout cell lines. Radiat Res. 2004;162:270–86. doi:10.​1667/​RR3221.PubMedCrossRef
160.
go back to reference Mirzayans R, Scott A, Cameron M, Murray D. Induction of accelerated senescence by gamma radiation in human solid tumour-derived cell lines expressing wild-type TP53. Radiat Res. 2005;163:53–62. doi:10.1667/RR3280.PubMedCrossRef Mirzayans R, Scott A, Cameron M, Murray D. Induction of accelerated senescence by gamma radiation in human solid tumour-derived cell lines expressing wild-type TP53. Radiat Res. 2005;163:53–62. doi:10.​1667/​RR3280.PubMedCrossRef
161.
go back to reference Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999;18:4808–18. doi:10.1038/sj.onc.1203078.PubMedCrossRef Chang BD, Xuan Y, Broude EV, Zhu H, Schott B, Fang J, et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999;18:4808–18. doi:10.​1038/​sj.​onc.​1203078.PubMedCrossRef
162.
go back to reference Podtcheko A, Ohtsuru A, Namba H, Saenko V, Starenki D, Palona I, et al. Inhibition of ABL tyrosine kinase potentiates radiation-induced terminal growth arrest in anaplastic thyroid cancer cells. Radiat Res. 2006;165:35–42. doi:10.1667/RR3466.1.PubMedCrossRef Podtcheko A, Ohtsuru A, Namba H, Saenko V, Starenki D, Palona I, et al. Inhibition of ABL tyrosine kinase potentiates radiation-induced terminal growth arrest in anaplastic thyroid cancer cells. Radiat Res. 2006;165:35–42. doi:10.​1667/​RR3466.​1.PubMedCrossRef
163.
go back to reference Lehman BD, McCubrey JA, Jeffrerson HS, Paine MS, Chappel WH, Terrian DM. A dominant role for p53 dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle. 2007;6:595–605. Lehman BD, McCubrey JA, Jeffrerson HS, Paine MS, Chappel WH, Terrian DM. A dominant role for p53 dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle. 2007;6:595–605.
Metadata
Title
Twilight effects of low doses of ionizing radiation on cellular systems: a bird’s eye view on current concepts and research
Authors
Ilaria Postiglione
Angela Chiaviello
Giuseppe Palumbo
Publication date
01-06-2010
Publisher
Springer US
Published in
Medical Oncology / Issue 2/2010
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-009-9241-9

Other articles of this Issue 2/2010

Medical Oncology 2/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.