Skip to main content
Top
Published in: Journal of Translational Medicine 1/2007

Open Access 01-12-2007 | Research

Tumor-specific T cells signal tumor destruction via the lymphotoxin β receptor

Authors: Hauke Winter, Natasja K van den Engel, Christian H Poehlein, Rudolf A Hatz, Bernard A Fox, Hong-Ming Hu

Published in: Journal of Translational Medicine | Issue 1/2007

Login to get access

Abstract

Background

Previously, we reported that adoptively transferred perforin k/o (PKO), and IFN-γ k/o (GKO), or perforin/IFN-γ double k/o (PKO/GKO) effector T cells mediated regression of B16BL6-D5 (D5) pulmonary metastases and showed that TNF receptor signaling played a critical role in mediating tumor regression. In this report we investigated the role of lymphotoxin-α (LT-α) as a potential effector molecules of tumor-specific effector T cells.

Methods

Effector T cells were generated from tumor vaccine-draining lymph node (TVDLN) of wt, GKO, LT-α deficient (LKO), or PKO/GKO mice and tested for their ability to mediate regression of D5 pulmonary metastases in the presence or absence of LT-βR-Fc fusion protein or anti-IFN-γ antibody. Chemokine production by D5 tumor cells was determined by ELISA, RT-PCR and Chemotaxis assays.

Results

Stimulated effector T cells from wt, GKO, or PKO/GKO mice expressed ligands for LT-β receptor (LT-βR). D5 tumor cells were found to constitutively express the LT-βR. Administration of LT-βR-Fc fusion protein completely abrogated the therapeutic efficacy of GKO or PKO/GKO but not wt effector T cells (p < 0.05). Consistent with this observation, therapeutic efficacy of effector T cells deficient in LT-α, was greatly reduced when IFN-γ production was neutralized. While recombinant LT-α1β2 did not induce apoptosis of D5 tumor cells in vitro, it induced secretion of chemokines by D5 that promoted migration of macrophages.

Conclusion

The contribution of LT-α expression by effector T cells to anti-tumor activity in vivo was not discernable when wt effector T cells were studied. However, the contribution of LT-β R signaling was identified for GKO or PKO/GKO effector T cells. Since LT-α does not directly induce killing of D5 tumor cells in vitro, but does stimulate D5 tumor cells to secrete chemokines, these data suggest a model where LT-α expression by tumor-specific effector T cells interacts via cross-linking of the LT-βR on tumor cells to induce secretion of chemokines that are chemotactic for macrophages. While the contribution of macrophages to tumor elimination in our system requires additional study, this model provides a possible explanation for the infiltration of inate effector cells that is seen coincident with tumor regression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002, 298: 850-854. 10.1126/science.1076514.PubMedCentralCrossRefPubMed Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002, 298: 850-854. 10.1126/science.1076514.PubMedCentralCrossRefPubMed
2.
go back to reference Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002, 99: 16168-16173. 10.1073/pnas.242600099.PubMedCentralCrossRefPubMed Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E: Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002, 99: 16168-16173. 10.1073/pnas.242600099.PubMedCentralCrossRefPubMed
3.
go back to reference Winter H, Hu HM, Urba WJ, Fox BA: Tumor regression after adoptive transfer of effector T cells is independent of perforin or Fas ligand (APO-1L/CD95L). J Immunol. 1999, 163: 4462-4472.PubMed Winter H, Hu HM, Urba WJ, Fox BA: Tumor regression after adoptive transfer of effector T cells is independent of perforin or Fas ligand (APO-1L/CD95L). J Immunol. 1999, 163: 4462-4472.PubMed
4.
go back to reference Winter H, Hu HM, McClain K, Urba WJ, Fox BA: Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy. J Immunol. 2001, 166: 7370-7380.CrossRefPubMed Winter H, Hu HM, McClain K, Urba WJ, Fox BA: Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy. J Immunol. 2001, 166: 7370-7380.CrossRefPubMed
5.
go back to reference Poehlein CH, Hu HM, Yamada J, Assmann I, Alvord WG, Urba WJ: TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. J Immunol. 2003, 170: 2004-2013.CrossRefPubMed Poehlein CH, Hu HM, Yamada J, Assmann I, Alvord WG, Urba WJ: TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. J Immunol. 2003, 170: 2004-2013.CrossRefPubMed
6.
go back to reference Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ: Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998, 95: 7556-7561. 10.1073/pnas.95.13.7556.PubMedCentralCrossRefPubMed Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ: Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA. 1998, 95: 7556-7561. 10.1073/pnas.95.13.7556.PubMedCentralCrossRefPubMed
7.
go back to reference Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001, 410: 1107-1111. 10.1038/35074122.CrossRefPubMed Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ: IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001, 410: 1107-1111. 10.1038/35074122.CrossRefPubMed
8.
go back to reference Ikeda H, Old LJ, Schreiber RD: The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002, 13: 95-109. 10.1016/S1359-6101(01)00038-7.CrossRefPubMed Ikeda H, Old LJ, Schreiber RD: The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002, 13: 95-109. 10.1016/S1359-6101(01)00038-7.CrossRefPubMed
9.
go back to reference Barth RJJ, Mule JJ, Spiess PJ, Rosenberg SA: Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med. 1991, 173: 647-658. 10.1084/jem.173.3.647.CrossRefPubMed Barth RJJ, Mule JJ, Spiess PJ, Rosenberg SA: Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med. 1991, 173: 647-658. 10.1084/jem.173.3.647.CrossRefPubMed
10.
go back to reference Hu HM, Urba WJ, Fox BA: Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol. 1998, 161: 3033-3041.PubMed Hu HM, Urba WJ, Fox BA: Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol. 1998, 161: 3033-3041.PubMed
11.
go back to reference Aruga A, Aruga E, Cameron MJ, Chang AE: Different cytokine profiles released by CD4+ and CD8+ tumor-draining lymph node cells involved in mediating tumor regression. J Leukoc Biol. 1997, 61: 507-516.PubMed Aruga A, Aruga E, Cameron MJ, Chang AE: Different cytokine profiles released by CD4+ and CD8+ tumor-draining lymph node cells involved in mediating tumor regression. J Leukoc Biol. 1997, 61: 507-516.PubMed
12.
go back to reference Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE: Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol. 1997, 159: 664-673.PubMed Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE: Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol. 1997, 159: 664-673.PubMed
13.
go back to reference Aruga A, Shu S, Chang AE: Tumor-specific granulocyte/macrophage colony-stimulating factor and interferon gamma secretion is associated with in vivo therapeutic efficacy of activated tumor-draining lymph node cells. Cancer Immunol Immunother. 1995, 41: 317-324. 10.1007/BF01517220.CrossRefPubMed Aruga A, Shu S, Chang AE: Tumor-specific granulocyte/macrophage colony-stimulating factor and interferon gamma secretion is associated with in vivo therapeutic efficacy of activated tumor-draining lymph node cells. Cancer Immunol Immunother. 1995, 41: 317-324. 10.1007/BF01517220.CrossRefPubMed
14.
go back to reference Winter H, Hu HM, Poehlein CH, Huntzicker E, Osterholzer JJ, Bashy J: Tumour-induced polarization of tumour vaccine-draining lymph node T cells to a type 1 cytokine profile predicts inherent strong immunogenicity of the tumour and correlates with therapeutic efficacy in adoptive transfer studies. Immunology. 2003, 108: 409-419. 10.1046/j.1365-2567.2003.01596.x.PubMedCentralCrossRefPubMed Winter H, Hu HM, Poehlein CH, Huntzicker E, Osterholzer JJ, Bashy J: Tumour-induced polarization of tumour vaccine-draining lymph node T cells to a type 1 cytokine profile predicts inherent strong immunogenicity of the tumour and correlates with therapeutic efficacy in adoptive transfer studies. Immunology. 2003, 108: 409-419. 10.1046/j.1365-2567.2003.01596.x.PubMedCentralCrossRefPubMed
15.
go back to reference Peng L, Krauss JC, Plautz GE, Mukai S, Shu S, Cohen PA: T cell-mediated tumor rejection displays diverse dependence upon perforin and IFN-gamma mechanisms that cannot be predicted from in vitro T cell characteristics. J Immunol. 2000, 165: 7116-7124.CrossRefPubMed Peng L, Krauss JC, Plautz GE, Mukai S, Shu S, Cohen PA: T cell-mediated tumor rejection displays diverse dependence upon perforin and IFN-gamma mechanisms that cannot be predicted from in vitro T cell characteristics. J Immunol. 2000, 165: 7116-7124.CrossRefPubMed
16.
go back to reference Plautz GE, Mukai S, Cohen PA, Shu S: Cross-presentation of tumor antigens to effector T cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J Immunol. 2000, 165: 3656-3662.CrossRefPubMed Plautz GE, Mukai S, Cohen PA, Shu S: Cross-presentation of tumor antigens to effector T cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J Immunol. 2000, 165: 3656-3662.CrossRefPubMed
17.
go back to reference Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP: Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993, 72: 847-856. 10.1016/0092-8674(93)90574-A.CrossRefPubMed Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP: Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 1993, 72: 847-856. 10.1016/0092-8674(93)90574-A.CrossRefPubMed
18.
go back to reference Ware CF, VanArsdale TL, Crowe PD, Browning JL: The ligands and receptors of the lymphotoxin system. Curr Top Microbiol Immunol. 1995, 198: 175-218.PubMed Ware CF, VanArsdale TL, Crowe PD, Browning JL: The ligands and receptors of the lymphotoxin system. Curr Top Microbiol Immunol. 1995, 198: 175-218.PubMed
19.
go back to reference Gramaglia I, Mauri DN, Miner KT, Ware CF, Croft M: Lymphotoxin alphabeta is expressed on recently activated naive and Th1-like CD4 cells but is down-regulated by IL-4 during Th2 differentiation. J Immunol. 1999, 162: 1333-1338.PubMed Gramaglia I, Mauri DN, Miner KT, Ware CF, Croft M: Lymphotoxin alphabeta is expressed on recently activated naive and Th1-like CD4 cells but is down-regulated by IL-4 during Th2 differentiation. J Immunol. 1999, 162: 1333-1338.PubMed
20.
go back to reference Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS: LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest. 1998, 102: 1142-1151.PubMedCentralCrossRefPubMed Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS: LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest. 1998, 102: 1142-1151.PubMedCentralCrossRefPubMed
21.
go back to reference Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL: LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity. 1998, 8: 21-30. 10.1016/S1074-7613(00)80455-0.CrossRefPubMed Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL: LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity. 1998, 8: 21-30. 10.1016/S1074-7613(00)80455-0.CrossRefPubMed
22.
go back to reference Rooney IA, Butrovich KD, Glass AA, Borboroglu S, Benedict CA, Whitbeck JC: The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem. 2000, 275: 14307-14315. 10.1074/jbc.275.19.14307.CrossRefPubMed Rooney IA, Butrovich KD, Glass AA, Borboroglu S, Benedict CA, Whitbeck JC: The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem. 2000, 275: 14307-14315. 10.1074/jbc.275.19.14307.CrossRefPubMed
23.
go back to reference Browning JL, Miatkowski K, Sizing I, Griffiths D, Zafari M, Benjamin CD: Signaling through the lymphotoxin beta receptor induces the death of some adenocarcinoma tumor lines. J Exp Med. 1996, 183: 867-878. 10.1084/jem.183.3.867.CrossRefPubMed Browning JL, Miatkowski K, Sizing I, Griffiths D, Zafari M, Benjamin CD: Signaling through the lymphotoxin beta receptor induces the death of some adenocarcinoma tumor lines. J Exp Med. 1996, 183: 867-878. 10.1084/jem.183.3.867.CrossRefPubMed
24.
go back to reference Hehlgans T, Mannel DN: Recombinant, soluble LIGHT (HVEM ligand) induces increased IL-8 secretion and growth arrest in A375 melanoma cells. J Interferon Cytokine Res. 2001, 21: 333-338. 10.1089/107999001300177529.CrossRefPubMed Hehlgans T, Mannel DN: Recombinant, soluble LIGHT (HVEM ligand) induces increased IL-8 secretion and growth arrest in A375 melanoma cells. J Interferon Cytokine Res. 2001, 21: 333-338. 10.1089/107999001300177529.CrossRefPubMed
25.
go back to reference Crowe PD, VanArsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B: A lymphotoxin-beta-specific receptor. Science. 1994, 264: 707-710. 10.1126/science.8171323.CrossRefPubMed Crowe PD, VanArsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B: A lymphotoxin-beta-specific receptor. Science. 1994, 264: 707-710. 10.1126/science.8171323.CrossRefPubMed
26.
go back to reference Force WR, Walter BN, Hession C, Tizard R, Kozak CA, Browning JL: Mouse lymphotoxin-beta receptor. Molecular genetics, ligand binding, and expression. J Immunol. 1995, 155: 5280-5288.PubMed Force WR, Walter BN, Hession C, Tizard R, Kozak CA, Browning JL: Mouse lymphotoxin-beta receptor. Molecular genetics, ligand binding, and expression. J Immunol. 1995, 155: 5280-5288.PubMed
27.
go back to reference Murphy M, Walter BN, Pike-Nobile L, Fanger NA, Guyre PM, Browning JL: Expression of the lymphotoxin beta receptor on follicular stromal cells in human lymphoid tissues. Cell Death Differ. 1998, 5: 497-505. 10.1038/sj.cdd.4400374.CrossRefPubMed Murphy M, Walter BN, Pike-Nobile L, Fanger NA, Guyre PM, Browning JL: Expression of the lymphotoxin beta receptor on follicular stromal cells in human lymphoid tissues. Cell Death Differ. 1998, 5: 497-505. 10.1038/sj.cdd.4400374.CrossRefPubMed
28.
go back to reference Degli-Esposti MA, Davis-Smith T, Din WS, Smolak PJ, Goodwin RG, Smith CA: Activation of the lymphotoxin beta receptor by cross-linking induces chemokine production and growth arrest in A375 melanoma cells. J Immunol. 1997, 158: 1756-1762.PubMed Degli-Esposti MA, Davis-Smith T, Din WS, Smolak PJ, Goodwin RG, Smith CA: Activation of the lymphotoxin beta receptor by cross-linking induces chemokine production and growth arrest in A375 melanoma cells. J Immunol. 1997, 158: 1756-1762.PubMed
29.
go back to reference Mackay F, Browning JL, Lawton P, Shah SA, Comiskey M, Bhan AK: Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology. 1998, 115: 1464-1475. 10.1016/S0016-5085(98)70025-3.CrossRefPubMed Mackay F, Browning JL, Lawton P, Shah SA, Comiskey M, Bhan AK: Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology. 1998, 115: 1464-1475. 10.1016/S0016-5085(98)70025-3.CrossRefPubMed
30.
go back to reference Probert L, Eugster HP, Akassoglou K, Bauer J, Frei K, Lassmann H: TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain. 2000, 123: 2005-2019. 10.1093/brain/123.10.2005.CrossRefPubMed Probert L, Eugster HP, Akassoglou K, Bauer J, Frei K, Lassmann H: TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease. Brain. 2000, 123: 2005-2019. 10.1093/brain/123.10.2005.CrossRefPubMed
31.
go back to reference Guo Z, Wang J, Meng L, Wu Q, Kim O, Hart J: Cutting edge: membrane lymphotoxin regulates CD8(+) T cell-mediated intestinal allograft rejection. J Immunol. 2001, 167: 4796-4800.CrossRefPubMed Guo Z, Wang J, Meng L, Wu Q, Kim O, Hart J: Cutting edge: membrane lymphotoxin regulates CD8(+) T cell-mediated intestinal allograft rejection. J Immunol. 2001, 167: 4796-4800.CrossRefPubMed
32.
go back to reference Wu Q, Salomon B, Chen M, Wang Y, Hoffman LM, Bluestone JA: Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med. 2001, 193: 1327-1332. 10.1084/jem.193.11.1327.PubMedCentralCrossRefPubMed Wu Q, Salomon B, Chen M, Wang Y, Hoffman LM, Bluestone JA: Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J Exp Med. 2001, 193: 1327-1332. 10.1084/jem.193.11.1327.PubMedCentralCrossRefPubMed
33.
go back to reference Lucas R, Tacchini-Cottier F, Guler R, Vesin D, Jemelin S, Olleros ML: A role for lymphotoxin beta receptor in host defense against Mycobacterium bovis BCG infection. Eur J Immunol. 1999, 29: 4002-4010. 10.1002/(SICI)1521-4141(199912)29:12<4002::AID-IMMU4002>3.0.CO;2-S.CrossRefPubMed Lucas R, Tacchini-Cottier F, Guler R, Vesin D, Jemelin S, Olleros ML: A role for lymphotoxin beta receptor in host defense against Mycobacterium bovis BCG infection. Eur J Immunol. 1999, 29: 4002-4010. 10.1002/(SICI)1521-4141(199912)29:12<4002::AID-IMMU4002>3.0.CO;2-S.CrossRefPubMed
34.
go back to reference Tamada K, Shimozaki K, Chapoval AI, Zhai Y, Su J, Chen SF: LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol. 2000, 164: 4105-4110.CrossRefPubMed Tamada K, Shimozaki K, Chapoval AI, Zhai Y, Su J, Chen SF: LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol. 2000, 164: 4105-4110.CrossRefPubMed
35.
go back to reference Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS: A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem. 1999, 274: 13733-13736. 10.1074/jbc.274.20.13733.CrossRefPubMed Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS: A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem. 1999, 274: 13733-13736. 10.1074/jbc.274.20.13733.CrossRefPubMed
36.
go back to reference Shaikh RB, Santee S, Granger SW, Butrovich K, Cheung T, Kronenberg M: Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol. 2001, 167: 6330-6337.CrossRefPubMed Shaikh RB, Santee S, Granger SW, Butrovich K, Cheung T, Kronenberg M: Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol. 2001, 167: 6330-6337.CrossRefPubMed
37.
go back to reference Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D: Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000, 6: 283-289. 10.1038/73136.CrossRefPubMed Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D: Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000, 6: 283-289. 10.1038/73136.CrossRefPubMed
38.
go back to reference Schrama D, thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA: Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity. 2001, 14: 111-121. 10.1016/S1074-7613(01)00094-2.CrossRefPubMed Schrama D, thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA: Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity. 2001, 14: 111-121. 10.1016/S1074-7613(01)00094-2.CrossRefPubMed
39.
go back to reference Fu YX, Chaplin DD: Development and maturation of secondary lymphoid tissues. Annu Rev Immunol. 1999, 17: 399-433. 10.1146/annurev.immunol.17.1.399.CrossRefPubMed Fu YX, Chaplin DD: Development and maturation of secondary lymphoid tissues. Annu Rev Immunol. 1999, 17: 399-433. 10.1146/annurev.immunol.17.1.399.CrossRefPubMed
40.
go back to reference Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD: A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000, 406: 309-314. 10.1038/35018581.CrossRefPubMed Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD: A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000, 406: 309-314. 10.1038/35018581.CrossRefPubMed
41.
go back to reference Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y: Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol. 2004, 5: 141-149. 10.1038/ni1029.CrossRefPubMed Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y: Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol. 2004, 5: 141-149. 10.1038/ni1029.CrossRefPubMed
42.
go back to reference Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MAJ: MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999, 398: 718-723. 10.1038/19546.CrossRefPubMed Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MAJ: MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature. 1999, 398: 718-723. 10.1038/19546.CrossRefPubMed
43.
go back to reference Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR: Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J Exp Med. 1999, 190: 1813-1824. 10.1084/jem.190.12.1813.PubMedCentralCrossRefPubMed Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR: Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J Exp Med. 1999, 190: 1813-1824. 10.1084/jem.190.12.1813.PubMedCentralCrossRefPubMed
44.
go back to reference Huo Y, Weber C, Forlow SB, Sperandio M, Thatte J, Mack M: The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest. 2001, 108: 1307-1314. 10.1172/JCI200112877.PubMedCentralCrossRefPubMed Huo Y, Weber C, Forlow SB, Sperandio M, Thatte J, Mack M: The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J Clin Invest. 2001, 108: 1307-1314. 10.1172/JCI200112877.PubMedCentralCrossRefPubMed
45.
go back to reference Arca MJ, Krauss JC, Aruga A, Cameron MJ, Shu S, Chang AE: Therapeutic efficacy of T cells derived from lymph nodes draining a poorly immunogenic tumor transduced to secrete granulocyte-macrophage colony-stimulating factor. Cancer Gene Ther. 1996, 3: 39-47.PubMed Arca MJ, Krauss JC, Aruga A, Cameron MJ, Shu S, Chang AE: Therapeutic efficacy of T cells derived from lymph nodes draining a poorly immunogenic tumor transduced to secrete granulocyte-macrophage colony-stimulating factor. Cancer Gene Ther. 1996, 3: 39-47.PubMed
46.
go back to reference Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006, 313: 1960-1964. 10.1126/science.1129139.CrossRefPubMed Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006, 313: 1960-1964. 10.1126/science.1129139.CrossRefPubMed
47.
go back to reference Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004, 351: 2159-2169. 10.1056/NEJMoa041869.CrossRefPubMed Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004, 351: 2159-2169. 10.1056/NEJMoa041869.CrossRefPubMed
48.
go back to reference Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003, 348: 203-213. 10.1056/NEJMoa020177.CrossRefPubMed Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003, 348: 203-213. 10.1056/NEJMoa020177.CrossRefPubMed
Metadata
Title
Tumor-specific T cells signal tumor destruction via the lymphotoxin β receptor
Authors
Hauke Winter
Natasja K van den Engel
Christian H Poehlein
Rudolf A Hatz
Bernard A Fox
Hong-Ming Hu
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2007
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-5-14

Other articles of this Issue 1/2007

Journal of Translational Medicine 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine