Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Review

Tumor glycolysis as a target for cancer therapy: progress and prospects

Authors: Shanmugasundaram Ganapathy-Kanniappan, Jean-Francois H Geschwind

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the “hallmarks of cancer”. This metabolic phenotype is characterized by preferential dependence on glycolysis (the process of conversion of glucose into pyruvate followed by lactate production) for energy production in an oxygen-independent manner. Although glycolysis is less efficient than oxidative phosphorylation in the net yield of adenosine triphosphate (ATP), cancer cells adapt to this mathematical disadvantage by increased glucose up-take, which in turn facilitates a higher rate of glycolysis. Apart from providing cellular energy, the metabolic intermediates of glycolysis also play a pivotal role in macromolecular biosynthesis, thus conferring selective advantage to cancer cells under diminished nutrient supply. Accumulating data also indicate that intracellular ATP is a critical determinant of chemoresistance. Under hypoxic conditions where glycolysis remains the predominant energy producing pathway sensitizing cancer cells would require intracellular depletion of ATP by inhibition of glycolysis. Together, the oncogenic regulation of glycolysis and multifaceted roles of glycolytic components underscore the biological significance of tumor glycolysis. Thus targeting glycolysis remains attractive for therapeutic intervention. Several preclinical investigations have indeed demonstrated the effectiveness of this therapeutic approach thereby supporting its scientific rationale. Recent reviews have provided a wealth of information on the biochemical targets of glycolysis and their inhibitors. The objective of this review is to present the most recent research on the cancer-specific role of glycolytic enzymes including their non-glycolytic functions in order to explore the potential for therapeutic opportunities. Further, we discuss the translational potential of emerging drug candidates in light of technical advances in treatment modalities such as image-guided targeted delivery of cancer therapeutics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bomanji JB, Costa DC, Ell PJ: Clinical role of positron emission tomography in oncology. Lancet Oncol. 2001, 2 (3): 157-164. 10.1016/S1470-2045(00)00257-6PubMedCrossRef Bomanji JB, Costa DC, Ell PJ: Clinical role of positron emission tomography in oncology. Lancet Oncol. 2001, 2 (3): 157-164. 10.1016/S1470-2045(00)00257-6PubMedCrossRef
2.
go back to reference Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-314. 0036–8075 (Print), 10.1126/science.123.3191.309PubMedCrossRef Warburg O: On the origin of cancer cells. Science. 1956, 123 (3191): 309-314. 0036–8075 (Print), 10.1126/science.123.3191.309PubMedCrossRef
3.
go back to reference Warburg O: On respiratory impairment in cancer cells. Science. 1956, 124 (3215): 269-270. PMID- 13471593 OWN - NLM STAT- MEDLINE (0036–8075 (Print))PubMed Warburg O: On respiratory impairment in cancer cells. Science. 1956, 124 (3215): 269-270. PMID- 13471593 OWN - NLM STAT- MEDLINE (0036–8075 (Print))PubMed
4.
go back to reference Geschwind JF, Georgiades CS, Ko YH, Pedersen PL: Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2004, 4 (3): 449-457. 10.1586/14737140.4.3.449PubMedCrossRef Geschwind JF, Georgiades CS, Ko YH, Pedersen PL: Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther. 2004, 4 (3): 449-457. 10.1586/14737140.4.3.449PubMedCrossRef
5.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013PubMedCrossRef Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013PubMedCrossRef
6.
go back to reference Macheda ML, Rogers S, Best JD: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005, 202 (3): 654-662. 10.1002/jcp.20166PubMedCrossRef Macheda ML, Rogers S, Best JD: Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005, 202 (3): 654-662. 10.1002/jcp.20166PubMedCrossRef
7.
go back to reference Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25 (34): 4633-4646. 10.1038/sj.onc.1209597PubMedCrossRef Pelicano H, Martin DS, Xu RH, Huang P: Glycolysis inhibition for anticancer treatment. Oncogene. 2006, 25 (34): 4633-4646. 10.1038/sj.onc.1209597PubMedCrossRef
8.
go back to reference Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ: Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008, 283 (42): 28106-28114. 10.1074/jbc.M803508200PubMedCentralPubMedCrossRef Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ: Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008, 283 (42): 28106-28114. 10.1074/jbc.M803508200PubMedCentralPubMedCrossRef
9.
go back to reference Fanciulli M, Bruno T, Giovannelli A, Gentile FP, Di Padova M, Rubiu O, Floridi A: Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine. Clin Cancer Res. 2000, 6 (4): 1590-1597.PubMed Fanciulli M, Bruno T, Giovannelli A, Gentile FP, Di Padova M, Rubiu O, Floridi A: Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of lonidamine. Clin Cancer Res. 2000, 6 (4): 1590-1597.PubMed
10.
go back to reference Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021PubMedCrossRef Hsu PP, Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 2008, 134 (5): 703-707. 10.1016/j.cell.2008.08.021PubMedCrossRef
11.
12.
go back to reference Birsoy K, Sabatini DM, Possemato R: Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat Med. 2012, 18 (7): 1022-1023. 10.1038/nm.2870PubMedCrossRef Birsoy K, Sabatini DM, Possemato R: Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat Med. 2012, 18 (7): 1022-1023. 10.1038/nm.2870PubMedCrossRef
15.
go back to reference Ward PS, Thompson CB: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012, 21 (3): 297-308. 10.1016/j.ccr.2012.02.014PubMedCentralPubMedCrossRef Ward PS, Thompson CB: Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012, 21 (3): 297-308. 10.1016/j.ccr.2012.02.014PubMedCentralPubMedCrossRef
16.
go back to reference Cuperlovic-Culf M, Culf AS, Touaibia M, Lefort N: Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers’ metabolic phenotype. Future Oncol. 2012, 8 (10): 1315-1330. 10.2217/fon.12.121PubMedCrossRef Cuperlovic-Culf M, Culf AS, Touaibia M, Lefort N: Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers’ metabolic phenotype. Future Oncol. 2012, 8 (10): 1315-1330. 10.2217/fon.12.121PubMedCrossRef
17.
19.
go back to reference Zhang Y, Yang JM: Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther. 2013, 14 (2): 81-89. 10.4161/cbt.22958PubMedCentralPubMedCrossRef Zhang Y, Yang JM: Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention. Cancer Biol Ther. 2013, 14 (2): 81-89. 10.4161/cbt.22958PubMedCentralPubMedCrossRef
20.
go back to reference Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED: A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11 (1): 37-51. 10.1016/j.ccr.2006.10.020PubMedCrossRef Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED: A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007, 11 (1): 37-51. 10.1016/j.ccr.2006.10.020PubMedCrossRef
21.
go back to reference Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P: K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012, 22 (2): 399-412. 10.1038/cr.2011.145PubMedCentralPubMedCrossRef Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P: K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 2012, 22 (2): 399-412. 10.1038/cr.2011.145PubMedCentralPubMedCrossRef
22.
go back to reference Lu W, Hu Y, Chen G, Chen Z, Zhang H, Wang F, Feng L, Pelicano H, Wang H, Keating MJ, Liu J, McKeehan W, Wang H, Luo Y, Huang P: Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 2012, 10 (5): e1001326- 10.1371/journal.pbio.1001326PubMedCentralPubMedCrossRef Lu W, Hu Y, Chen G, Chen Z, Zhang H, Wang F, Feng L, Pelicano H, Wang H, Keating MJ, Liu J, McKeehan W, Wang H, Luo Y, Huang P: Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol. 2012, 10 (5): e1001326- 10.1371/journal.pbio.1001326PubMedCentralPubMedCrossRef
24.
go back to reference Cavalli LR, Varella-Garcia M, Liang BC: Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 1997, 8 (11): 1189-1198.PubMed Cavalli LR, Varella-Garcia M, Liang BC: Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ. 1997, 8 (11): 1189-1198.PubMed
25.
go back to reference King MP, Attardi G: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989, 246 (4929): 500-503. 10.1126/science.2814477PubMedCrossRef King MP, Attardi G: Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989, 246 (4929): 500-503. 10.1126/science.2814477PubMedCrossRef
26.
go back to reference de Souza AC, Justo GZ, de Araujo DR, Cavagis AD: Defining the molecular basis of tumor metabolism: a continuing challenge since Warburg's discovery. Cell Physiol Biochem. 2011, 28 (5): 771-792. 10.1159/000335792PubMedCrossRef de Souza AC, Justo GZ, de Araujo DR, Cavagis AD: Defining the molecular basis of tumor metabolism: a continuing challenge since Warburg's discovery. Cell Physiol Biochem. 2011, 28 (5): 771-792. 10.1159/000335792PubMedCrossRef
27.
go back to reference Pfeiffer T, Schuster S, Bonhoeffer S: Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001, 292 (5516): 504-507. 10.1126/science.1058079PubMedCrossRef Pfeiffer T, Schuster S, Bonhoeffer S: Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001, 292 (5516): 504-507. 10.1126/science.1058079PubMedCrossRef
28.
go back to reference Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z: Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012, 72 (1): 304-314. 10.1158/0008-5472.CAN-11-1674PubMedCentralPubMedCrossRef Zhou Y, Tozzi F, Chen J, Fan F, Xia L, Wang J, Gao G, Zhang A, Xia X, Brasher H, Widger W, Ellis LM, Weihua Z: Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012, 72 (1): 304-314. 10.1158/0008-5472.CAN-11-1674PubMedCentralPubMedCrossRef
30.
go back to reference Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4 (11): 891-899. 10.1038/nrc1478PubMedCrossRef Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4 (11): 891-899. 10.1038/nrc1478PubMedCrossRef
31.
go back to reference Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011, 27: 441-464. 10.1146/annurev-cellbio-092910-154237PubMedCrossRef Lunt SY, Vander Heiden MG: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011, 27: 441-464. 10.1146/annurev-cellbio-092910-154237PubMedCrossRef
32.
go back to reference Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB: Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008, 18 (1): 54-61. 10.1016/j.gde.2008.02.003PubMedCentralPubMedCrossRef Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB: Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008, 18 (1): 54-61. 10.1016/j.gde.2008.02.003PubMedCentralPubMedCrossRef
33.
go back to reference Backos DS, Franklin CC, Reigan P: The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012, 83 (8): 1005-1012. 10.1016/j.bcp.2011.11.016PubMedCrossRef Backos DS, Franklin CC, Reigan P: The role of glutathione in brain tumor drug resistance. Biochem Pharmacol. 2012, 83 (8): 1005-1012. 10.1016/j.bcp.2011.11.016PubMedCrossRef
34.
go back to reference Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C: Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013, 2013: 972913-PubMedCentralPubMedCrossRef Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C: Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013, 2013: 972913-PubMedCentralPubMedCrossRef
35.
go back to reference Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR, Khodarev NN: STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med. 2009, 7: 68- 10.1186/1741-7015-7-68PubMedCentralPubMedCrossRef Pitroda SP, Wakim BT, Sood RF, Beveridge MG, Beckett MA, MacDermed DM, Weichselbaum RR, Khodarev NN: STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Med. 2009, 7: 68- 10.1186/1741-7015-7-68PubMedCentralPubMedCrossRef
36.
go back to reference Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D: The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012, 53 (3): 421-436. 10.1016/j.freeradbiomed.2012.05.006PubMedCrossRef Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D: The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012, 53 (3): 421-436. 10.1016/j.freeradbiomed.2012.05.006PubMedCrossRef
37.
go back to reference Xu X, Zur Hausen A, Coy JF, Lochelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009, 124 (6): 1330-1337. 10.1002/ijc.24078PubMedCrossRef Xu X, Zur Hausen A, Coy JF, Lochelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 2009, 124 (6): 1330-1337. 10.1002/ijc.24078PubMedCrossRef
38.
go back to reference Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res. 2010, 16 (3): 857-866. 10.1158/1078-0432.CCR-09-2604PubMedCentralPubMedCrossRef Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res. 2010, 16 (3): 857-866. 10.1158/1078-0432.CCR-09-2604PubMedCentralPubMedCrossRef
39.
go back to reference Wanka C, Steinbach JP, Rieger J: Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012, 287 (40): 33436-33446. 10.1074/jbc.M112.384578PubMedCentralPubMedCrossRef Wanka C, Steinbach JP, Rieger J: Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 2012, 287 (40): 33436-33446. 10.1074/jbc.M112.384578PubMedCentralPubMedCrossRef
40.
go back to reference Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB: Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene. 2010, 29 (20): 2962-2972. 10.1038/onc.2010.67PubMedCentralPubMedCrossRef Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB: Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene. 2010, 29 (20): 2962-2972. 10.1038/onc.2010.67PubMedCentralPubMedCrossRef
41.
go back to reference Monteleone F, Rosa R, Vitale M, D'Ambrosio C, Succoio M, Formisano L, Nappi L, Romano MF, Scaloni A, Tortora G, Bianco R, Zambrano N: Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody. Proteomics. 2013, 13 (5): 866-877. 10.1002/pmic.201200303PubMedCrossRef Monteleone F, Rosa R, Vitale M, D'Ambrosio C, Succoio M, Formisano L, Nappi L, Romano MF, Scaloni A, Tortora G, Bianco R, Zambrano N: Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody. Proteomics. 2013, 13 (5): 866-877. 10.1002/pmic.201200303PubMedCrossRef
42.
go back to reference Kim JW, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005, 30 (3): 142-150. 10.1016/j.tibs.2005.01.005PubMedCrossRef Kim JW, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 2005, 30 (3): 142-150. 10.1016/j.tibs.2005.01.005PubMedCrossRef
43.
go back to reference Pastorino JG, Shulga N, Hoek JB: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002, 277 (9): 7610-7618. 10.1074/jbc.M109950200PubMedCrossRef Pastorino JG, Shulga N, Hoek JB: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002, 277 (9): 7610-7618. 10.1074/jbc.M109950200PubMedCrossRef
44.
go back to reference Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N: Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004, 16 (5): 819-830. 10.1016/j.molcel.2004.11.014PubMedCrossRef Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N: Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004, 16 (5): 819-830. 10.1016/j.molcel.2004.11.014PubMedCrossRef
45.
go back to reference Seidler NW: GAPDH and intermediary metabolism. Adv Exp Med Biol. 2013, 985: 37-59. 10.1007/978-94-007-4716-6_2PubMedCrossRef Seidler NW: GAPDH and intermediary metabolism. Adv Exp Med Biol. 2013, 985: 37-59. 10.1007/978-94-007-4716-6_2PubMedCrossRef
46.
47.
go back to reference Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF: Glyceraldehyde-3-phosphate dehydrogenase: a promising target for molecular therapy in hepatocellular carcinoma. Oncotarget. 2012, 3 (9): 940-953.PubMedCentralPubMedCrossRef Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF: Glyceraldehyde-3-phosphate dehydrogenase: a promising target for molecular therapy in hepatocellular carcinoma. Oncotarget. 2012, 3 (9): 940-953.PubMedCentralPubMedCrossRef
48.
go back to reference Wu S, Le H: Dual roles of PKM2 in cancer metabolism. Acta Biochim Biophys Sin (Shanghai). 2013, 45 (1): 27-35. 10.1093/abbs/gms106CrossRef Wu S, Le H: Dual roles of PKM2 in cancer metabolism. Acta Biochim Biophys Sin (Shanghai). 2013, 45 (1): 27-35. 10.1093/abbs/gms106CrossRef
49.
go back to reference Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452 (7184): 230-233. 10.1038/nature06734PubMedCrossRef Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008, 452 (7184): 230-233. 10.1038/nature06734PubMedCrossRef
50.
go back to reference Luo W, Semenza GL: Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012, 23 (11): 560-566. 10.1016/j.tem.2012.06.010PubMedCentralPubMedCrossRef Luo W, Semenza GL: Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012, 23 (11): 560-566. 10.1016/j.tem.2012.06.010PubMedCentralPubMedCrossRef
51.
go back to reference Luo W, Semenza GL: Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2011, 2 (7): 551-556.PubMedCentralPubMedCrossRef Luo W, Semenza GL: Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2011, 2 (7): 551-556.PubMedCentralPubMedCrossRef
52.
go back to reference Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012, 14 (12): 1295-1304. 10.1038/ncb2629PubMedCentralPubMedCrossRef Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012, 14 (12): 1295-1304. 10.1038/ncb2629PubMedCentralPubMedCrossRef
53.
go back to reference Filipp FV: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog. 2013, 12: 14- 10.4103/1477-3163.115423PubMedCentralPubMedCrossRef Filipp FV: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator. J Carcinog. 2013, 12: 14- 10.4103/1477-3163.115423PubMedCentralPubMedCrossRef
54.
go back to reference Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012, 150 (4): 685-696. 10.1016/j.cell.2012.07.018PubMedCentralPubMedCrossRef Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012, 150 (4): 685-696. 10.1016/j.cell.2012.07.018PubMedCentralPubMedCrossRef
55.
go back to reference Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z: Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011, 480 (7375): 118-122.PubMedCentralPubMedCrossRef Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z: Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011, 480 (7375): 118-122.PubMedCentralPubMedCrossRef
56.
go back to reference Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008, 452 (7184): 181-186. 10.1038/nature06667PubMedCrossRef Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008, 452 (7184): 181-186. 10.1038/nature06667PubMedCrossRef
57.
go back to reference Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M: Mitochondrial oxidative phosphorylation is regulated by fructose 1, 6-bisphosphate. A possible role in Crabtree effect induction?. J Biol Chem. 2008, 283 (40): 26948-26955. 10.1074/jbc.M800408200PubMedCrossRef Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A, Rigoulet M: Mitochondrial oxidative phosphorylation is regulated by fructose 1, 6-bisphosphate. A possible role in Crabtree effect induction?. J Biol Chem. 2008, 283 (40): 26948-26955. 10.1074/jbc.M800408200PubMedCrossRef
58.
go back to reference Wartenberg M, Richter M, Datchev A, Gunther S, Milosevic N, Bekhite MM, Figulla HR, Aran JM, Petriz J, Sauer H: Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state. J Cell Biochem. 2010, 109 (2): 434-446.PubMed Wartenberg M, Richter M, Datchev A, Gunther S, Milosevic N, Bekhite MM, Figulla HR, Aran JM, Petriz J, Sauer H: Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state. J Cell Biochem. 2010, 109 (2): 434-446.PubMed
59.
go back to reference Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, Pinheiro C, Silva J, Pereira H, Monteiro P, Henrique RM, Reis RM, Lopes C, Baltazar F: Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011, 11: 312- 10.1186/1471-2407-11-312PubMedCentralPubMedCrossRef Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, Pinheiro C, Silva J, Pereira H, Monteiro P, Henrique RM, Reis RM, Lopes C, Baltazar F: Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011, 11: 312- 10.1186/1471-2407-11-312PubMedCentralPubMedCrossRef
60.
go back to reference Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, Sasaguri Y, Nishizawa S, Kohno K: Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011, 102 (5): 1007-1013. 10.1111/j.1349-7006.2011.01908.xPubMedCrossRef Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, Sasaguri Y, Nishizawa S, Kohno K: Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 2011, 102 (5): 1007-1013. 10.1111/j.1349-7006.2011.01908.xPubMedCrossRef
61.
go back to reference Masters C: Cellular differentiation and the microcompartmentation of glycolysis. Mech Ageing Dev. 1991, 61 (1): 11-22. 10.1016/0047-6374(91)90003-IPubMedCrossRef Masters C: Cellular differentiation and the microcompartmentation of glycolysis. Mech Ageing Dev. 1991, 61 (1): 11-22. 10.1016/0047-6374(91)90003-IPubMedCrossRef
62.
go back to reference Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J: Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009, 284 (36): 24223-24232. 10.1074/jbc.M109.016816PubMedCentralPubMedCrossRef Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J: Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009, 284 (36): 24223-24232. 10.1074/jbc.M109.016816PubMedCentralPubMedCrossRef
63.
go back to reference Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C: Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol. 2009, 394 (4): 789-803. 10.1016/j.jmb.2009.09.062PubMedCentralPubMedCrossRef Demarse NA, Ponnusamy S, Spicer EK, Apohan E, Baatz JE, Ogretmen B, Davies C: Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol. 2009, 394 (4): 789-803. 10.1016/j.jmb.2009.09.062PubMedCentralPubMedCrossRef
64.
go back to reference Harada N, Yasunaga R, Higashimura Y, Yamaji R, Fujimoto K, Moss J, Inui H, Nakano Y: Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem. 2007, 282 (31): 22651-22661. 10.1074/jbc.M610724200PubMedCrossRef Harada N, Yasunaga R, Higashimura Y, Yamaji R, Fujimoto K, Moss J, Inui H, Nakano Y: Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem. 2007, 282 (31): 22651-22661. 10.1074/jbc.M610724200PubMedCrossRef
65.
go back to reference Popanda O, Fox G, Thielmann HW: Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta. 1998, 1397 (1): 102-117. 10.1016/S0167-4781(97)00229-7PubMedCrossRef Popanda O, Fox G, Thielmann HW: Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta. 1998, 1397 (1): 102-117. 10.1016/S0167-4781(97)00229-7PubMedCrossRef
66.
go back to reference Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60 (4): 916-921.PubMed Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60 (4): 916-921.PubMed
67.
go back to reference Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008, 118 (12): 3930-3942.PubMedCentralPubMed Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008, 118 (12): 3930-3942.PubMedCentralPubMed
68.
go back to reference Draoui N, Feron O: Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech. 2011, 4 (6): 727-732. 10.1242/dmm.007724PubMedCentralPubMedCrossRef Draoui N, Feron O: Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech. 2011, 4 (6): 727-732. 10.1242/dmm.007724PubMedCentralPubMedCrossRef
69.
70.
go back to reference Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F: Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr. 2012, 44 (1): 127-139. 10.1007/s10863-012-9428-1PubMedCrossRef Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F: Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr. 2012, 44 (1): 127-139. 10.1007/s10863-012-9428-1PubMedCrossRef
71.
go back to reference Feron O: Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009, 92 (3): 329-333. 10.1016/j.radonc.2009.06.025PubMedCrossRef Feron O: Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009, 92 (3): 329-333. 10.1016/j.radonc.2009.06.025PubMedCrossRef
72.
go back to reference Hussien R, Brooks GA: Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics. 2011, 43 (5): 255-264. 10.1152/physiolgenomics.00177.2010PubMedCentralPubMedCrossRef Hussien R, Brooks GA: Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics. 2011, 43 (5): 255-264. 10.1152/physiolgenomics.00177.2010PubMedCentralPubMedCrossRef
73.
go back to reference Hugo-Wissemann D, Anundi I, Lauchart W, Viebahn R, de Groot H: Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes. Hepatology. 1991, 13 (2): 297-303. 10.1002/hep.1840130215PubMedCrossRef Hugo-Wissemann D, Anundi I, Lauchart W, Viebahn R, de Groot H: Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes. Hepatology. 1991, 13 (2): 297-303. 10.1002/hep.1840130215PubMedCrossRef
74.
go back to reference Mikuriya K, Kuramitsu Y, Ryozawa S, Fujimoto M, Mori S, Oka M, Hamano K, Okita K, Sakaida I, Nakamura K: Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol. 2007, 30 (4): 849-855.PubMed Mikuriya K, Kuramitsu Y, Ryozawa S, Fujimoto M, Mori S, Oka M, Hamano K, Okita K, Sakaida I, Nakamura K: Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol. 2007, 30 (4): 849-855.PubMed
75.
go back to reference Yeh CS, Wang JY, Chung FY, Lee SC, Huang MY, Kuo CW, Yang MJ, Lin SR: Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol Rep. 2008, 19 (1): 81-91.PubMed Yeh CS, Wang JY, Chung FY, Lee SC, Huang MY, Kuo CW, Yang MJ, Lin SR: Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol Rep. 2008, 19 (1): 81-91.PubMed
76.
go back to reference Rimpi S, Nilsson JA: Metabolic enzymes regulated by the Myc oncogene are possible targets for chemotherapy or chemoprevention. Biochem Soc Trans. 2007, 35 (Pt 2): 305-310.PubMedCrossRef Rimpi S, Nilsson JA: Metabolic enzymes regulated by the Myc oncogene are possible targets for chemotherapy or chemoprevention. Biochem Soc Trans. 2007, 35 (Pt 2): 305-310.PubMedCrossRef
77.
go back to reference Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia. 2005, 7 (4): 324-330. 10.1593/neo.04430PubMedCentralPubMedCrossRef Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ: Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia. 2005, 7 (4): 324-330. 10.1593/neo.04430PubMedCentralPubMedCrossRef
78.
go back to reference Rodriguez-Enriquez S, Gallardo-Perez JC, Aviles-Salas A, Marin-Hernandez A, Carreno-Fuentes L, Maldonado-Lagunas V, Moreno-Sanchez R: Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol. 2008, 216 (1): 189-197. 10.1002/jcp.21392PubMedCrossRef Rodriguez-Enriquez S, Gallardo-Perez JC, Aviles-Salas A, Marin-Hernandez A, Carreno-Fuentes L, Maldonado-Lagunas V, Moreno-Sanchez R: Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol. 2008, 216 (1): 189-197. 10.1002/jcp.21392PubMedCrossRef
79.
go back to reference Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501. 10.1038/nrc839PubMedCrossRef Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002, 2 (7): 489-501. 10.1038/nrc839PubMedCrossRef
80.
go back to reference Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64 (11): 3892-3899. 10.1158/0008-5472.CAN-03-2904PubMedCrossRef Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004, 64 (11): 3892-3899. 10.1158/0008-5472.CAN-03-2904PubMedCrossRef
81.
go back to reference Csibi A, Blenis J: Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors. BMC Biol. 2011, 9: 69- 10.1186/1741-7007-9-69PubMedCentralPubMedCrossRef Csibi A, Blenis J: Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors. BMC Biol. 2011, 9: 69- 10.1186/1741-7007-9-69PubMedCentralPubMedCrossRef
82.
go back to reference Jiang X, Kenerson H, Aicher L, Miyaoka R, Eary J, Bissler J, Yeung RS: The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. Am J Pathol. 2008, 172 (6): 1748-1756. 10.2353/ajpath.2008.070958PubMedCentralPubMedCrossRef Jiang X, Kenerson H, Aicher L, Miyaoka R, Eary J, Bissler J, Yeung RS: The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. Am J Pathol. 2008, 172 (6): 1748-1756. 10.2353/ajpath.2008.070958PubMedCentralPubMedCrossRef
83.
go back to reference Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010, 39 (2): 171-183. 10.1016/j.molcel.2010.06.022PubMedCentralPubMedCrossRef Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010, 39 (2): 171-183. 10.1016/j.molcel.2010.06.022PubMedCentralPubMedCrossRef
84.
go back to reference Klement RJ, Kammerer U: Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab (Lond). 2011, 8: 75- 10.1186/1743-7075-8-75CrossRef Klement RJ, Kammerer U: Is there a role for carbohydrate restriction in the treatment and prevention of cancer?. Nutr Metab (Lond). 2011, 8: 75- 10.1186/1743-7075-8-75CrossRef
85.
go back to reference Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X: A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012, 11 (8): 1672-1682. 10.1158/1535-7163.MCT-12-0131PubMedCrossRef Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X: A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012, 11 (8): 1672-1682. 10.1158/1535-7163.MCT-12-0131PubMedCrossRef
86.
go back to reference Mathupala SP, Ko YH, Pedersen PL: Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006, 25 (34): 4777-4786. 10.1038/sj.onc.1209603PubMedCentralPubMedCrossRef Mathupala SP, Ko YH, Pedersen PL: Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006, 25 (34): 4777-4786. 10.1038/sj.onc.1209603PubMedCentralPubMedCrossRef
87.
go back to reference Mathupala SP, Ko YH, Pedersen PL: Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009, 19 (1): 17-24. 10.1016/j.semcancer.2008.11.006PubMedCentralPubMedCrossRef Mathupala SP, Ko YH, Pedersen PL: Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009, 19 (1): 17-24. 10.1016/j.semcancer.2008.11.006PubMedCentralPubMedCrossRef
88.
go back to reference Price GS, Page RL, Riviere JE, Cline JM, Thrall DE: Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs. Cancer Chemother Pharmacol. 1996, 38 (2): 129-135. 10.1007/s002800050460PubMedCrossRef Price GS, Page RL, Riviere JE, Cline JM, Thrall DE: Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs. Cancer Chemother Pharmacol. 1996, 38 (2): 129-135. 10.1007/s002800050460PubMedCrossRef
89.
go back to reference Maher JC, Krishan A, Lampidis TJ: Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol. 2004, 53 (2): 116-122. 10.1007/s00280-003-0724-7PubMedCrossRef Maher JC, Krishan A, Lampidis TJ: Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol. 2004, 53 (2): 116-122. 10.1007/s00280-003-0724-7PubMedCrossRef
90.
go back to reference Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, Savaraj N, Lane AN, Lampidis TJ: Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther. 2007, 6 (11): 3049-3058. 10.1158/1535-7163.MCT-07-0310PubMedCrossRef Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M, Savaraj N, Lane AN, Lampidis TJ: Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther. 2007, 6 (11): 3049-3058. 10.1158/1535-7163.MCT-07-0310PubMedCrossRef
91.
go back to reference Zhong D, Liu X, Schafer-Hales K, Marcus AI, Khuri FR, Sun SY, Zhou W: 2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Mol Cancer Ther. 2008, 7 (4): 809-817. 10.1158/1535-7163.MCT-07-0559PubMedCrossRef Zhong D, Liu X, Schafer-Hales K, Marcus AI, Khuri FR, Sun SY, Zhou W: 2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Mol Cancer Ther. 2008, 7 (4): 809-817. 10.1158/1535-7163.MCT-07-0559PubMedCrossRef
92.
go back to reference Zhong D, Xiong L, Liu T, Liu X, Liu X, Chen J, Sun SY, Khuri FR, Zong Y, Zhou Q, Zhou W: The glycolytic inhibitor 2-deoxyglucose activates multiple prosurvival pathways through IGF1R. J Biol Chem. 2009, 284 (35): 23225-23233. 10.1074/jbc.M109.005280PubMedCentralPubMedCrossRef Zhong D, Xiong L, Liu T, Liu X, Liu X, Chen J, Sun SY, Khuri FR, Zong Y, Zhou Q, Zhou W: The glycolytic inhibitor 2-deoxyglucose activates multiple prosurvival pathways through IGF1R. J Biol Chem. 2009, 284 (35): 23225-23233. 10.1074/jbc.M109.005280PubMedCentralPubMedCrossRef
93.
go back to reference Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ: Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol Cancer Ther. 2007, 6 (2): 732-741. 10.1158/1535-7163.MCT-06-0407PubMedCrossRef Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ: Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-D-glucose. Mol Cancer Ther. 2007, 6 (2): 732-741. 10.1158/1535-7163.MCT-06-0407PubMedCrossRef
94.
go back to reference Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ: 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 2004, 64 (1): 31-34. 10.1158/0008-5472.CAN-03-3294PubMedCrossRef Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ: 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 2004, 64 (1): 31-34. 10.1158/0008-5472.CAN-03-3294PubMedCrossRef
95.
go back to reference Dwarakanath B, Jain V: Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol. 2009, 5 (5): 581-585. 10.2217/fon.09.44PubMedCrossRef Dwarakanath B, Jain V: Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol. 2009, 5 (5): 581-585. 10.2217/fon.09.44PubMedCrossRef
96.
go back to reference Chesney J: 6-Phosphofructo-2-Kinase/fructose-2, 6-Bisphosphatase and Tumor Cell Glycolysis. Curr Opin Clin Nutr Metab Care. 2006, 9 (5): 535-539. 10.1097/01.mco.0000241661.15514.fbPubMedCrossRef Chesney J: 6-Phosphofructo-2-Kinase/fructose-2, 6-Bisphosphatase and Tumor Cell Glycolysis. Curr Opin Clin Nutr Metab Care. 2006, 9 (5): 535-539. 10.1097/01.mco.0000241661.15514.fbPubMedCrossRef
97.
go back to reference Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008, 7 (1): 110-120. 10.1158/1535-7163.MCT-07-0482PubMedCrossRef Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 2008, 7 (1): 110-120. 10.1158/1535-7163.MCT-07-0482PubMedCrossRef
98.
go back to reference Thornalley PJ, Rabbani N: Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol. 2011, 22 (3): 318-325. 10.1016/j.semcdb.2011.02.006PubMedCrossRef Thornalley PJ, Rabbani N: Glyoxalase in tumourigenesis and multidrug resistance. Semin Cell Dev Biol. 2011, 22 (3): 318-325. 10.1016/j.semcdb.2011.02.006PubMedCrossRef
99.
go back to reference Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL: Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004, 324 (1): 269-275. 10.1016/j.bbrc.2004.09.047PubMedCrossRef Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL: Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004, 324 (1): 269-275. 10.1016/j.bbrc.2004.09.047PubMedCrossRef
100.
go back to reference Pedersen PL: The cancer cell's “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr. 2007, 39 (1): 1-12. 10.1007/s10863-007-9070-5PubMedCrossRef Pedersen PL: The cancer cell's “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr. 2007, 39 (1): 1-12. 10.1007/s10863-007-9070-5PubMedCrossRef
101.
go back to reference Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF: 3-Bromopyruvate: a New Targeted Antiglycolytic Agent and a Promise for Cancer Therapy. Curr Pharm Biotechnol. 2010, 11 (5): 510-517. 10.2174/138920110791591427PubMedCrossRef Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF: 3-Bromopyruvate: a New Targeted Antiglycolytic Agent and a Promise for Cancer Therapy. Curr Pharm Biotechnol. 2010, 11 (5): 510-517. 10.2174/138920110791591427PubMedCrossRef
102.
go back to reference Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF: Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 2013, 33 (1): 13-20.PubMed Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF: Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 2013, 33 (1): 13-20.PubMed
103.
go back to reference Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 2009, 29 (12): 4909-4918.PubMedCentralPubMed Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 2009, 29 (12): 4909-4918.PubMedCentralPubMed
104.
go back to reference Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A: Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J. 2009, 417 (3): 717-726. 10.1042/BJ20080805PubMedCrossRef Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A: Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J. 2009, 417 (3): 717-726. 10.1042/BJ20080805PubMedCrossRef
105.
go back to reference Spoden GA, Mazurek S, Morandell D, Bacher N, Ausserlechner MJ, Jansen-Durr P, Eigenbrodt E, Zwerschke W: Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer. 2008, 123 (2): 312-321. 10.1002/ijc.23512PubMedCrossRef Spoden GA, Mazurek S, Morandell D, Bacher N, Ausserlechner MJ, Jansen-Durr P, Eigenbrodt E, Zwerschke W: Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer. 2008, 123 (2): 312-321. 10.1002/ijc.23512PubMedCrossRef
106.
go back to reference Dombrauckas JD, Santarsiero BD, Mesecar AD: Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 2005, 44 (27): 9417-9429. 10.1021/bi0474923PubMedCrossRef Dombrauckas JD, Santarsiero BD, Mesecar AD: Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 2005, 44 (27): 9417-9429. 10.1021/bi0474923PubMedCrossRef
107.
go back to reference Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011, 30 (42): 4297-4306. 10.1038/onc.2011.137PubMedCrossRef Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011, 30 (42): 4297-4306. 10.1038/onc.2011.137PubMedCrossRef
108.
go back to reference Goldberg MS, Sharp PA: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012, 209 (2): 217-224. 10.1084/jem.20111487PubMedCentralPubMedCrossRef Goldberg MS, Sharp PA: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012, 209 (2): 217-224. 10.1084/jem.20111487PubMedCentralPubMedCrossRef
109.
go back to reference Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, Xian J, Cantley LC: Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010, 79 (8): 1118-1124. 10.1016/j.bcp.2009.12.003PubMedCentralPubMedCrossRef Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, Xian J, Cantley LC: Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010, 79 (8): 1118-1124. 10.1016/j.bcp.2009.12.003PubMedCentralPubMedCrossRef
110.
go back to reference Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010, 107 (5): 2037-2042. 10.1073/pnas.0914433107PubMedCentralPubMedCrossRef Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV: Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010, 107 (5): 2037-2042. 10.1073/pnas.0914433107PubMedCentralPubMedCrossRef
111.
go back to reference Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M: Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 2010, 9: 33-PubMedCentralPubMedCrossRef Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M: Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer. 2010, 9: 33-PubMedCentralPubMedCrossRef
112.
go back to reference Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP: Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011, 13 (7): 620-632.PubMedCentralPubMedCrossRef Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP: Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011, 13 (7): 620-632.PubMedCentralPubMedCrossRef
113.
go back to reference Lencioni R: Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010, 52 (2): 762-773. 10.1002/hep.23725PubMedCrossRef Lencioni R: Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010, 52 (2): 762-773. 10.1002/hep.23725PubMedCrossRef
114.
go back to reference Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL: Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 2002, 62 (14): 3909-3913.PubMed Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL: Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 2002, 62 (14): 3909-3913.PubMed
115.
go back to reference Vali M, Liapi E, Kowalski J, Hong K, Khwaja A, Torbenson MS, Georgiades C, Geschwind JF: Intraarterial therapy with a new potent inhibitor of tumor metabolism (3-bromopyruvate): identification of therapeutic dose and method of injection in an animal model of liver cancer. J Vasc Interv Radiol. 2007, 18 (1 Pt 1): 95-101.PubMedCrossRef Vali M, Liapi E, Kowalski J, Hong K, Khwaja A, Torbenson MS, Georgiades C, Geschwind JF: Intraarterial therapy with a new potent inhibitor of tumor metabolism (3-bromopyruvate): identification of therapeutic dose and method of injection in an animal model of liver cancer. J Vasc Interv Radiol. 2007, 18 (1 Pt 1): 95-101.PubMedCrossRef
116.
go back to reference Vali M, Vossen JA, Buijs M, Engles JM, Liapi E, Ventura VP, Khwaja A, Acha-Ngwodo O, Shanmugasundaram G, Syed L, Wahl RL, Geschwind JF: Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J Pharmacol Exp Ther. 2008, 327 (1): 32-37. 10.1124/jpet.108.141093PubMedCentralPubMedCrossRef Vali M, Vossen JA, Buijs M, Engles JM, Liapi E, Ventura VP, Khwaja A, Acha-Ngwodo O, Shanmugasundaram G, Syed L, Wahl RL, Geschwind JF: Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J Pharmacol Exp Ther. 2008, 327 (1): 32-37. 10.1124/jpet.108.141093PubMedCentralPubMedCrossRef
117.
go back to reference Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, Brummelkamp TR, Clish CB, Sabatini DM: MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet. 2013, 45 (1): 104-108.PubMedCentralPubMedCrossRef Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, Brummelkamp TR, Clish CB, Sabatini DM: MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet. 2013, 45 (1): 104-108.PubMedCentralPubMedCrossRef
118.
go back to reference Cao X, Bloomston M, Zhang T, Frankel WL, Jia G, Wang B, Hall NC, Koch RM, Cheng H, Knopp MV, Sun D: Synergistic antipancreatic tumor effect by simultaneously targeting hypoxic cancer cells with HSP90 inhibitor and glycolysis inhibitor. Clin Cancer Res. 2008, 14 (6): 1831-1839. 10.1158/1078-0432.CCR-07-1607PubMedCrossRef Cao X, Bloomston M, Zhang T, Frankel WL, Jia G, Wang B, Hall NC, Koch RM, Cheng H, Knopp MV, Sun D: Synergistic antipancreatic tumor effect by simultaneously targeting hypoxic cancer cells with HSP90 inhibitor and glycolysis inhibitor. Clin Cancer Res. 2008, 14 (6): 1831-1839. 10.1158/1078-0432.CCR-07-1607PubMedCrossRef
119.
go back to reference Filomeni G, Cardaci S, Da Costa Ferreira AM, Rotilio G, Ciriolo MR: Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment. Biochem J. 2011, 437 (3): 443-453. 10.1042/BJ20110510PubMedCrossRef Filomeni G, Cardaci S, Da Costa Ferreira AM, Rotilio G, Ciriolo MR: Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment. Biochem J. 2011, 437 (3): 443-453. 10.1042/BJ20110510PubMedCrossRef
120.
go back to reference Nakano A, Tsuji D, Miki H, Cui Q, El Sayed SM, Ikegame A, Oda A, Amou H, Nakamura S, Harada T, Fujii S, Kagawa K, Takeuchi K, Sakai A, Ozaki S, Okano K, Nakamura T, Itoh K, Matsumoto T, Abe M: Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells. PLoS One. 2011, 6 (11): e27222- 10.1371/journal.pone.0027222PubMedCentralPubMedCrossRef Nakano A, Tsuji D, Miki H, Cui Q, El Sayed SM, Ikegame A, Oda A, Amou H, Nakamura S, Harada T, Fujii S, Kagawa K, Takeuchi K, Sakai A, Ozaki S, Okano K, Nakamura T, Itoh K, Matsumoto T, Abe M: Glycolysis inhibition inactivates ABC transporters to restore drug sensitivity in malignant cells. PLoS One. 2011, 6 (11): e27222- 10.1371/journal.pone.0027222PubMedCentralPubMedCrossRef
121.
go back to reference Beneteau M, Zunino B, Jacquin MA, Meynet O, Chiche J, Pradelli LA, Marchetti S, Cornille A, Carles M, Ricci JE: Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci U S A. 2012, 109 (49): 20071-20076. 10.1073/pnas.1206360109PubMedCentralPubMedCrossRef Beneteau M, Zunino B, Jacquin MA, Meynet O, Chiche J, Pradelli LA, Marchetti S, Cornille A, Carles M, Ricci JE: Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proc Natl Acad Sci U S A. 2012, 109 (49): 20071-20076. 10.1073/pnas.1206360109PubMedCentralPubMedCrossRef
Metadata
Title
Tumor glycolysis as a target for cancer therapy: progress and prospects
Authors
Shanmugasundaram Ganapathy-Kanniappan
Jean-Francois H Geschwind
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-152

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine