Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Tuberculosis | Research

Novel mesoporous silica nanocarriers containing gold; a rapid diagnostic tool for tuberculosis

Authors: Chang Sun, Xiaoying Zhang, Jialu Wang, Yahao Chen, Cunren Meng

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Tuberculosis (TB) is major health concern and reason of deaths from decades to current date. Even though with a lot of advancements, diagnostic techniques, and discovery of standard antibiotics TB remains crucial challenge and can create worst scenario for human health in near future. Nanoparticles play emerging role in diagnosis and treatment of TB. In this study, we developed mesoporous silica nanoparticles containing gold (MSNs@GNPs) for rapid diagnosis and treatment of TB. The physicochemical characterization revealed effective surface morphology and particles diameter, that is applicable for in vitro applications. The in vitro antimicrobial analysis revealed that the designed MSNs@GNPs has retained significantly lower minimal inhibitory concentration (MIC) values and can effectively demolish mycobacterium tuberculosis (Mtb). Furthermore, the diagnosis efficiency of the MSNs@GNPs was evaluated by calorimetric analysis. Which demonstrates that MSNs@GNPs can be used for rapid diagnosis of the tuberculosis when applied on in vitro culture of the Mtb. The current study needs further verification on human’s clinical samples from tuberculosis patients. However, MSNs@GNPs can be a versatile clinical approach for the rapid diagnosis and clinical treatment of the tuberculosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nasiruddin M, Neyaz K, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberculosis Research and Treatment. 2017;2017:4920209.CrossRef Nasiruddin M, Neyaz K, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberculosis Research and Treatment. 2017;2017:4920209.CrossRef
2.
go back to reference Dadgostar M. Antimicrobial Resistance: implications and costs. Infection and drug resistance. 2019;12:3903–10.CrossRef Dadgostar M. Antimicrobial Resistance: implications and costs. Infection and drug resistance. 2019;12:3903–10.CrossRef
3.
go back to reference Gajdács M, Albericio F. Antibiotic Resistance: From the Bench to Patients. Antibiotics (Basel). 2019;8(3):129. Gajdács M, Albericio F. Antibiotic Resistance: From the Bench to Patients. Antibiotics (Basel). 2019;8(3):129.
4.
go back to reference Chaves-López C, Usai D, Donadu MG, Serio A, González-Mina RT, Simeoni MC, Molicotti P, Zanetti S, Pinna A, Paparella A. Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro. Food Funct. 2018:9(5). Chaves-López C, Usai D, Donadu MG, Serio A, González-Mina RT, Simeoni MC, Molicotti P, Zanetti S, Pinna A, Paparella A. Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro. Food Funct.  2018:9(5).
5.
go back to reference Trong TL, Viet HD, Quoc DT, Tuan LA, Raal A, Usai D, Sanna G, Carta A, Rappelli P, Diaz N, Cappuccinelli P, Zanetti S, Thi NH, Donadu MG. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics (Basel). 2020;9(4):207. Trong TL, Viet HD, Quoc DT, Tuan LA, Raal A, Usai D, Sanna G, Carta A, Rappelli P, Diaz N,  Cappuccinelli P, Zanetti S, Thi NH, Donadu MG. Biological Activities of Essential Oils from Leaves of Paramignya trimera (Oliv.) Guillaum and Limnocitrus littoralis (Miq.) Swingle. Antibiotics (Basel). 2020;9(4):207.
6.
go back to reference Baptista PV, Franco RF, Koziol-Montewka M, Paluch-Oles J, Doria G. Gold-nanoparticle-probe–based assay for rapid and direct detection of mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006;52(7):1433–4.CrossRef Baptista PV, Franco RF, Koziol-Montewka M, Paluch-Oles J, Doria G. Gold-nanoparticle-probe–based assay for rapid and direct detection of mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006;52(7):1433–4.CrossRef
7.
go back to reference El-samadony H, Althani A, Tageldin MA. Nanodiagnostics for tuberculosis detection Nanodiagnostics for tuberculosis detection. Expert Review Mol Diagnostics. 2017;0(0). El-samadony H, Althani A, Tageldin MA. Nanodiagnostics for tuberculosis detection Nanodiagnostics for tuberculosis detection. Expert Review Mol Diagnostics.  2017;0(0).
8.
go back to reference Tsai T, Shen S, Cheng C. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci Technol Adv Mater. 2013;14:044404.CrossRef Tsai T, Shen S, Cheng C. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci Technol Adv Mater. 2013;14:044404.CrossRef
9.
go back to reference Tenland E, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One. 2019:1–16. Tenland E, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One. 2019:1–16.
10.
go back to reference Negro S, García-garcía L, Montejo C, Barcia E, Fernández-carballido A. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine. 2017;12:1959–68.CrossRef Negro S, García-garcía L, Montejo C, Barcia E, Fernández-carballido A. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine. 2017;12:1959–68.CrossRef
11.
go back to reference Lee C, et al. Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clin Microbiol Infect. 2012;18:E149–57.CrossRef Lee C, et al. Super-paramagnetic iron oxide nanoparticles for use in extrapulmonary tuberculosis diagnosis. Clin Microbiol Infect. 2012;18:E149–57.CrossRef
12.
go back to reference Resistance D, et al. The Anti-Mycobacterial Activity Of Ag , ZnO , And Ag- ZnO Nanoparticles Against MDR- And XDR- Mycobacterium tuberculosis. Infection and Drug Resistance. 2019;12:3425–35.CrossRef Resistance D, et al. The Anti-Mycobacterial Activity Of Ag , ZnO , And Ag- ZnO Nanoparticles Against MDR- And XDR- Mycobacterium tuberculosis. Infection and Drug Resistance. 2019;12:3425–35.CrossRef
13.
go back to reference Ncbi F. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis , Mycobacterium bovis and multiple- drug-resistant tuberculosis strains. Rev Sci Tech. 2018;37(3):823–30.CrossRef Ncbi F. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis , Mycobacterium bovis and multiple- drug-resistant tuberculosis strains. Rev Sci Tech. 2018;37(3):823–30.CrossRef
14.
go back to reference Gupta A, Pandey S, Yadav JS. A review on recent trends in green synthesis of gold nanoparticles for tuberculosis. Adv Pharm Bull. 2021;11(1):10–27.CrossRef Gupta A, Pandey S, Yadav JS. A review on recent trends in green synthesis of gold nanoparticles for tuberculosis. Adv Pharm Bull. 2021;11(1):10–27.CrossRef
15.
go back to reference Gale P. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.CrossRef Gale P. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.CrossRef
16.
go back to reference Hussain MM, Samir TM, Azzazy HME. Unmodi fi ed gold nanoparticles for direct and rapid detection of mycobacterium tuberculosis complex. Clin Biochem. 2013;46(7–8):633–7.CrossRef Hussain MM, Samir TM, Azzazy HME. Unmodi fi ed gold nanoparticles for direct and rapid detection of mycobacterium tuberculosis complex. Clin Biochem. 2013;46(7–8):633–7.CrossRef
17.
go back to reference Tsai T, et al. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sensors. 2017;2:1345–54.CrossRef Tsai T, et al. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sensors. 2017;2:1345–54.CrossRef
18.
go back to reference H. M. E. A. Amira Mansour, Salma Tammam, Asma Althani. A single tube system for the detection of Mycobacterium tuberculosis DNA using gold nanoparticles based FRET assay. J Microbiol Methods. 2017;1–10. H. M. E. A. Amira Mansour, Salma Tammam, Asma Althani. A single tube system for the detection of Mycobacterium tuberculosis DNA using gold nanoparticles based FRET assay. J Microbiol Methods. 2017;1–10.
19.
go back to reference J. I. and P. V. B. Pedro Costa, Ana Amaro, Ana Botelho, “Gold nanoprobes assay for identification of mycobacteria from the Mycobacterium tuberculosis complex,” Clinical Microbiology and Infection, 2009. J. I. and P. V. B. Pedro Costa, Ana Amaro, Ana Botelho, “Gold nanoprobes assay for identification of mycobacteria from the Mycobacterium tuberculosis complex,” Clinical Microbiology and Infection, 2009.
20.
go back to reference Rippel RA, Seifalian AM. Gold revolution — gold nanoparticles for modern medicine and surgery. J Nanosci Nanotechnol. 2011;11:3740–8.CrossRef Rippel RA, Seifalian AM. Gold revolution — gold nanoparticles for modern medicine and surgery. J Nanosci Nanotechnol. 2011;11:3740–8.CrossRef
21.
go back to reference Karunaratne RE, Wijenayaka LA, Wijesundera SS, De Silva KMN, Adikaram CP, Perera J. Use of nanotechnology for infectious disease diagnostics : application in drug resistant tuberculosis. BMC Infect Dis. 2019;19(618):1–9. Karunaratne RE, Wijenayaka LA, Wijesundera SS, De Silva KMN, Adikaram CP, Perera J. Use of nanotechnology for infectious disease diagnostics : application in drug resistant tuberculosis. BMC Infect Dis. 2019;19(618):1–9.
22.
go back to reference Sergio G, Montalvo-quir S, Prados-rosales RC, Gonz B, Luque-garcia JL. Biointerfaces Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids and Surfaces B: Biointerfaces. 2021;197:111405.CrossRef Sergio G, Montalvo-quir S, Prados-rosales RC, Gonz B, Luque-garcia JL. Biointerfaces Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids and Surfaces B: Biointerfaces. 2021;197:111405.CrossRef
23.
go back to reference Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–75.CrossRef Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–75.CrossRef
24.
go back to reference Jalani MA, Yuliati L, Lee SL, Lintang HO. Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol. Beilstein J Nanotechnol. 2019;10:1368–79.CrossRef Jalani MA, Yuliati L, Lee SL, Lintang HO. Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol. Beilstein J Nanotechnol. 2019;10:1368–79.CrossRef
25.
go back to reference Jin L, Liu B, Louis ME, Li G, He J. Highly crystalline Mesoporous Titania loaded with Monodispersed gold Nanoparticles : controllable metal − support interaction in porous materials. ACS Appl Mater Interfaces. 2020;12:9617–27.CrossRef Jin L, Liu B, Louis ME, Li G, He J. Highly crystalline Mesoporous Titania loaded with Monodispersed gold Nanoparticles : controllable metal − support interaction in porous materials. ACS Appl Mater Interfaces. 2020;12:9617–27.CrossRef
Metadata
Title
Novel mesoporous silica nanocarriers containing gold; a rapid diagnostic tool for tuberculosis
Authors
Chang Sun
Xiaoying Zhang
Jialu Wang
Yahao Chen
Cunren Meng
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03451-7

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue