Skip to main content
Top
Published in: BMC Public Health 1/2022

Open Access 01-12-2022 | Tuberculosis | Research

Importance of ventilation and occupancy to Mycobacterium tuberculosis transmission rates in congregate settings

Authors: A. K. Deol, N. Shaikh, K. Middelkoop, M. Mohlamonyane, R. G. White, N. McCreesh

Published in: BMC Public Health | Issue 1/2022

Login to get access

Abstract

Background

Ventilation rates are a key determinant of the transmission rate of Mycobacterium tuberculosis and other airborne infections. Targeting infection prevention and control (IPC) interventions at locations where ventilation rates are low and occupancy high could be a highly effective intervention strategy. Despite this, few data are available on ventilation rates and occupancy in congregate locations in high tuberculosis burden settings.

Methods

We collected carbon dioxide concentration and occupancy data in congregate locations and public transport on 88 occasions, in Cape Town, South Africa. For each location, we estimated ventilation rates and the relative rate of infection, accounting for ventilation rates and occupancy.

Results

We show that the estimated potential transmission rate in congregate settings and public transport varies greatly between different settings. Overall, in the community we studied, estimated infection risk was higher in minibus taxis and trains than in salons, bars, and shops. Despite good levels of ventilation, infection risk could be high in the clinic due to high occupancy levels.

Conclusion

Public transport in particular may be promising targets for infection prevention and control interventions in this setting, both to reduce Mtb transmission, but also to reduce the transmission of other airborne pathogens such as measles and SARS-CoV-2.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Global tuberculosis report. 2021. World Health Organization. Global tuberculosis report. 2021.
2.
go back to reference World Health Organization. The End TB Strategy. In: Global strategy and targets for tuberculosis prevention, care and control after 2015; 2014. World Health Organization. The End TB Strategy. In: Global strategy and targets for tuberculosis prevention, care and control after 2015; 2014.
3.
go back to reference Yates TA, Tanser F, Abubakar I. Plan Beta for tuberculosis: it's time to think seriously about poorly ventilated congregate settings. Int J Tuberc Lung Dis. 2016;20(1):5–10.CrossRef Yates TA, Tanser F, Abubakar I. Plan Beta for tuberculosis: it's time to think seriously about poorly ventilated congregate settings. Int J Tuberc Lung Dis. 2016;20(1):5–10.CrossRef
4.
go back to reference Richardson ET, Morrow CD, Kalil DB, Bekker L-G, Wood R. Shared air: a renewed focus on ventilation for the prevention of tuberculosis transmission. Plos One. 2014;9(5):e96334.CrossRef Richardson ET, Morrow CD, Kalil DB, Bekker L-G, Wood R. Shared air: a renewed focus on ventilation for the prevention of tuberculosis transmission. Plos One. 2014;9(5):e96334.CrossRef
5.
go back to reference World Health Organization. Coronavirus disease (COVID-19): How is it transmitted? 2021. World Health Organization. Coronavirus disease (COVID-19): How is it transmitted? 2021.
6.
go back to reference Riley E, Murphy G, Riley R. Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978;107(5):421–32.CrossRef Riley E, Murphy G, Riley R. Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978;107(5):421–32.CrossRef
7.
go back to reference Escombe AR, Ticona E, Chávez-Pérez V, Espinoza M, Moore DA. Improving natural ventilation in hospital waiting and consulting rooms to reduce nosocomial tuberculosis transmission risk in a low resource setting. BMC Infect Dis. 2019;19(1):88.CrossRef Escombe AR, Ticona E, Chávez-Pérez V, Espinoza M, Moore DA. Improving natural ventilation in hospital waiting and consulting rooms to reduce nosocomial tuberculosis transmission risk in a low resource setting. BMC Infect Dis. 2019;19(1):88.CrossRef
8.
go back to reference Du CR, Wang SC, Yu MC, et al. Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air. 2020;30(3):422–32.CrossRef Du CR, Wang SC, Yu MC, et al. Effect of ventilation improvement during a tuberculosis outbreak in underventilated university buildings. Indoor Air. 2020;30(3):422–32.CrossRef
9.
go back to reference Lygizos M, Shenoi SV, Brooks RP, et al. Natural ventilation reduces high TB transmission risk in traditional homes in rural KwaZulu-Natal, South Africa. BMC Infect Dis. 2013;13(1):300.CrossRef Lygizos M, Shenoi SV, Brooks RP, et al. Natural ventilation reduces high TB transmission risk in traditional homes in rural KwaZulu-Natal, South Africa. BMC Infect Dis. 2013;13(1):300.CrossRef
10.
go back to reference Escombe AR, Moore DAJ, Gilman RH, et al. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. Plos Med. 2009;6(3):e1000043.CrossRef Escombe AR, Moore DAJ, Gilman RH, et al. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. Plos Med. 2009;6(3):e1000043.CrossRef
11.
go back to reference Middelkoop K, Mathema B, Myer L, et al. Transmission of tuberculosis in a south African community with a high prevalence of HIV infection. J Infect Dis. 2015;211(1):53–61.CrossRef Middelkoop K, Mathema B, Myer L, et al. Transmission of tuberculosis in a south African community with a high prevalence of HIV infection. J Infect Dis. 2015;211(1):53–61.CrossRef
12.
go back to reference McCreesh N, White RG. An explanation for the low proportion of tuberculosis that results from transmission between household and known social contacts. Sci Rep. 2018;8(1):5382.CrossRef McCreesh N, White RG. An explanation for the low proportion of tuberculosis that results from transmission between household and known social contacts. Sci Rep. 2018;8(1):5382.CrossRef
13.
go back to reference McCreesh N, Looker C, Dodd PJ, et al. Comparison of indoor contact time data in Zambia and Western cape, South Africa suggests targeting of interventions to reduce mycobacterium tuberculosis transmission should be informed by local data. BMC Infect Dis. 2016;16(1):1–9. McCreesh N, Looker C, Dodd PJ, et al. Comparison of indoor contact time data in Zambia and Western cape, South Africa suggests targeting of interventions to reduce mycobacterium tuberculosis transmission should be informed by local data. BMC Infect Dis. 2016;16(1):1–9.
14.
go back to reference Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol. 2013;177(6):556–61.CrossRef Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol. 2013;177(6):556–61.CrossRef
15.
go back to reference Taylor JG, Yates TA, Mthethwa M, Tanser F, Abubakar I, Altamirano H. Measuring ventilation and modelling M. tuberculosis transmission in indoor congregate settings, rural KwaZulu-Natal. Int J Tuberc Lung Dis. 2016;20(9):1155–61.CrossRef Taylor JG, Yates TA, Mthethwa M, Tanser F, Abubakar I, Altamirano H. Measuring ventilation and modelling M. tuberculosis transmission in indoor congregate settings, rural KwaZulu-Natal. Int J Tuberc Lung Dis. 2016;20(9):1155–61.CrossRef
16.
go back to reference Andrews JR, Morrow C, Walensky RP, Wood R. Integrating social contact and environmental data in evaluating tuberculosis transmission in a south African township. J Infect Dis. 2014;210(4):597–603.CrossRef Andrews JR, Morrow C, Walensky RP, Wood R. Integrating social contact and environmental data in evaluating tuberculosis transmission in a south African township. J Infect Dis. 2014;210(4):597–603.CrossRef
17.
go back to reference Patterson B, Morrow CD, Kohls D, Deignan C, Ginsburg S, Wood R. Mapping sites of high TB transmission risk: integrating the shared air and social behaviour of TB cases and adolescents in a south African township. Sci Total Environ. 2017;583:97–103.CrossRef Patterson B, Morrow CD, Kohls D, Deignan C, Ginsburg S, Wood R. Mapping sites of high TB transmission risk: integrating the shared air and social behaviour of TB cases and adolescents in a south African township. Sci Total Environ. 2017;583:97–103.CrossRef
18.
go back to reference Middelkoop K, Bekker L-G, Myer L, et al. Antiretroviral therapy and TB notification rates in a high HIV prevalence south African community. J Acquir Immune Defic Syndr (1999). 2011;56(3):263.CrossRef Middelkoop K, Bekker L-G, Myer L, et al. Antiretroviral therapy and TB notification rates in a high HIV prevalence south African community. J Acquir Immune Defic Syndr (1999). 2011;56(3):263.CrossRef
20.
go back to reference Persily A, de Jonge L. Carbon dioxide generation rates for building occupants. Indoor Air. 2017;27(5):868–79.CrossRef Persily A, de Jonge L. Carbon dioxide generation rates for building occupants. Indoor Air. 2017;27(5):868–79.CrossRef
21.
go back to reference Deol A, Beckwith P, Yates TA, et al. Estimating ventilation rates in rooms with varying occupancy levels: relevance for reducing transmission risk of airborne pathogens. Plos One. 2021;16(6):e0253096.CrossRef Deol A, Beckwith P, Yates TA, et al. Estimating ventilation rates in rooms with varying occupancy levels: relevance for reducing transmission risk of airborne pathogens. Plos One. 2021;16(6):e0253096.CrossRef
23.
go back to reference Karat A, McCreesh N, Baisley K, Govender I, Kallon I, Kielmann K. Estimating waiting times, patient flow, and waiting room occupancy density as part of tuberculosis infection prevention and control research in south African primary health care clinics. Plos Glob Public Health. 2022;2(7):e0000684.CrossRef Karat A, McCreesh N, Baisley K, Govender I, Kallon I, Kielmann K. Estimating waiting times, patient flow, and waiting room occupancy density as part of tuberculosis infection prevention and control research in south African primary health care clinics. Plos Glob Public Health. 2022;2(7):e0000684.CrossRef
24.
go back to reference Govender I, Karat AS, Olivier S, et al. Prevalence of mycobacterium tuberculosis in sputum and reported symptoms among clinic attendees compared to a community survey in rural South Africa. Clin Infect Dis. 2021. Govender I, Karat AS, Olivier S, et al. Prevalence of mycobacterium tuberculosis in sputum and reported symptoms among clinic attendees compared to a community survey in rural South Africa. Clin Infect Dis. 2021.
25.
go back to reference McCreesh N, Grant AD, Yates TA, Karat AS, White RG. Tuberculosis from transmission in clinics in high HIV settings may be far higher than contact data suggest. Int J Tuberc Lung Dis. 2020;24(4):403–8.CrossRef McCreesh N, Grant AD, Yates TA, Karat AS, White RG. Tuberculosis from transmission in clinics in high HIV settings may be far higher than contact data suggest. Int J Tuberc Lung Dis. 2020;24(4):403–8.CrossRef
26.
go back to reference Yates TA, Khan PY, Knight GM, et al. The transmission of mycobacterium tuberculosis in high burden settings. Lancet Infect Dis. 2016;16(2):227–38.CrossRef Yates TA, Khan PY, Knight GM, et al. The transmission of mycobacterium tuberculosis in high burden settings. Lancet Infect Dis. 2016;16(2):227–38.CrossRef
27.
go back to reference Beggs C, Noakes C, Sleigh P, Fletcher L, Siddiqi K. The transmission of tuberculosis in confined spaces: an analytical review of alternative epidemiological models. Int J Tuberc Lung Dis. 2003;7(11):1015–26.PubMed Beggs C, Noakes C, Sleigh P, Fletcher L, Siddiqi K. The transmission of tuberculosis in confined spaces: an analytical review of alternative epidemiological models. Int J Tuberc Lung Dis. 2003;7(11):1015–26.PubMed
28.
go back to reference Kunkel A, Zur Wiesch PA, Nathavitharana RR, Marx FM, Jenkins HE, Cohen T. Smear positivity in paediatric and adult tuberculosis: systematic review and meta-analysis. BMC Infect Dis. 2016;16(1):1–9.CrossRef Kunkel A, Zur Wiesch PA, Nathavitharana RR, Marx FM, Jenkins HE, Cohen T. Smear positivity in paediatric and adult tuberculosis: systematic review and meta-analysis. BMC Infect Dis. 2016;16(1):1–9.CrossRef
Metadata
Title
Importance of ventilation and occupancy to Mycobacterium tuberculosis transmission rates in congregate settings
Authors
A. K. Deol
N. Shaikh
K. Middelkoop
M. Mohlamonyane
R. G. White
N. McCreesh
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2022
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-022-14133-5

Other articles of this Issue 1/2022

BMC Public Health 1/2022 Go to the issue