Skip to main content
Top
Published in: Respiratory Research 1/2010

Open Access 01-12-2010 | Research

TTF-1 regulates α5 nicotinic acetylcholine receptor (nAChR) subunits in proximal and distal lung epithelium

Authors: Paul R Reynolds, Camille H Allison, Charles P Willnauer

Published in: Respiratory Research | Issue 1/2010

Login to get access

Abstract

Background

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels comprised of five similar subunits that influence signal transduction and cell turnover. α5 is a structural subunit detected in many non-neuronal tissues; however, its function during pulmonary development is unknown.

Results

α5 was assessed by immunohistochemistry and RT-PCR in mouse lungs from embryonic day (E)13.5 to post-natal day (PN)20. From E13.5 to E18.5, α5 expression was primarily observed in primitive airway epithelial cells while mesenchymal expression was faint and sporadic. α5 expression was detected throughout the proximal lung at PN1 and extensively expressed in the peripheral lung at PN4, an early stage of murine alveologenesis. An interesting shift occurred wherein α5 expression was almost undetectable in the proximal lung from PN4-PN10, but significant localization was again observed at PN20. Transcriptional control of α5 was determined by assessing the activity of reporters containing 2.0-kb and 850-bp of the mouse α5 promoter. Because perinatal expression of α5 was abundant in bronchiolar and alveolar epithelium, we assessed transcriptional control of α5 in Beas2B cells, a human bronchiolar epithelial cell line, and A-549 cells, an alveolar type II cell-like human epithelial cell line. Thyroid Transcription Factor-1 (TTF-1), a key transcription regulator of pulmonary morphogenesis, significantly increased α5 transcription by acting on both the 2.0-kb and 850-bp α5 promoters. Site-directed mutagenesis revealed that TTF-1 activated α5 transcription by binding specific TTF-1 response elements. Exogenous TTF-1 also significantly induced α5 transcription.

Conclusions

These data demonstrate that α5 is specifically controlled in a temporal and spatial manner during pulmonary morphogenesis. Ongoing research may demonstrate that precise regulation of α5 is important during normal organogenesis and misexpression correlates with tobacco related lung disease.
Literature
1.
go back to reference Guazzi S, Proce M, DeFelice M, Damante G, Mattei MG, DiLauro R: Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 1990, 9:3631–3639.PubMedPubMedCentral Guazzi S, Proce M, DeFelice M, Damante G, Mattei MG, DiLauro R: Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 1990, 9:3631–3639.PubMedPubMedCentral
2.
go back to reference Lazzaro D, Proce M, DeFelice M, DeLauro R: The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 1991, 113:1093–110.PubMed Lazzaro D, Proce M, DeFelice M, DeLauro R: The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 1991, 113:1093–110.PubMed
3.
go back to reference Mizuno K, Gonzales FJ, Kimura S: Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol Cell Biol 1991, 11:4927–33.CrossRefPubMedPubMedCentral Mizuno K, Gonzales FJ, Kimura S: Thyroid-specific enhancer-binding protein (T/EBP): cDNA cloning, functional characterization, and structural identity with thyroid transcription factor TTF-1. Mol Cell Biol 1991, 11:4927–33.CrossRefPubMedPubMedCentral
4.
go back to reference Zhou L, Lim L, Costa RH, Whitsett JA: Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J Histochem Cytochem 1996, 44:1183–1193.CrossRefPubMed Zhou L, Lim L, Costa RH, Whitsett JA: Thyroid transcription factor-1, hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory protein in developing mouse lung. J Histochem Cytochem 1996, 44:1183–1193.CrossRefPubMed
5.
go back to reference Bohinski RJ, Bohinski RJ, DiLauro R, Whitsett JA: The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 1994, 14:5671–5681.CrossRefPubMedPubMedCentral Bohinski RJ, Bohinski RJ, DiLauro R, Whitsett JA: The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 1994, 14:5671–5681.CrossRefPubMedPubMedCentral
6.
go back to reference Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzales FJ: The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996, 10:60–69.CrossRefPubMed Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzales FJ: The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996, 10:60–69.CrossRefPubMed
7.
go back to reference Conti-Fine BM, Navaneetham D, Lei S, Maus MD: Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 2000, 393:279–94.CrossRefPubMed Conti-Fine BM, Navaneetham D, Lei S, Maus MD: Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 2000, 393:279–94.CrossRefPubMed
8.
go back to reference Zia S, Ndoye A, Nguyan VT, Grando SA: Nicotine enhances expression of the alpha3, alpha 4, alpha5, and alpha7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 1997, 97:243–62.PubMed Zia S, Ndoye A, Nguyan VT, Grando SA: Nicotine enhances expression of the alpha3, alpha 4, alpha5, and alpha7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 1997, 97:243–62.PubMed
9.
go back to reference Carlisle DL, Hopkins TM, Gaither-Davis A: Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts. Respir Res 2004, 5:27.CrossRefPubMedPubMedCentral Carlisle DL, Hopkins TM, Gaither-Davis A: Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts. Respir Res 2004, 5:27.CrossRefPubMedPubMedCentral
10.
go back to reference Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G: Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res 1996, 109:125–37.CrossRefPubMed Lindstrom J, Anand R, Gerzanich V, Peng X, Wang F, Wells G: Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res 1996, 109:125–37.CrossRefPubMed
11.
go back to reference West KA, Brognard J, Clark AS, et al.: Rapid Akt activation by nicotine nd a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J CLin Invest 2003, 111:81–90.CrossRefPubMedPubMedCentral West KA, Brognard J, Clark AS, et al.: Rapid Akt activation by nicotine nd a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J CLin Invest 2003, 111:81–90.CrossRefPubMedPubMedCentral
12.
go back to reference Brunzell DH, Russell DS, Picciotto MR: In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 2003, 84:1431–41.CrossRefPubMed Brunzell DH, Russell DS, Picciotto MR: In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 2003, 84:1431–41.CrossRefPubMed
13.
go back to reference Minana MD, Montoliu C, Llansola M, Grisolia S, Felipo V: Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 1998, 37:847–57.CrossRefPubMed Minana MD, Montoliu C, Llansola M, Grisolia S, Felipo V: Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 1998, 37:847–57.CrossRefPubMed
14.
go back to reference Bertrand D, Changeux J: Orthodontic correction of maxillary flaring using provisional restorations. Neurosciences 1995, 7:75–90. Bertrand D, Changeux J: Orthodontic correction of maxillary flaring using provisional restorations. Neurosciences 1995, 7:75–90.
15.
go back to reference Lindstrom J: Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 1997, 15:193–222.CrossRefPubMed Lindstrom J: Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 1997, 15:193–222.CrossRefPubMed
16.
go back to reference Reynolds PR, Hoidal JR: Temporal-spatial expression and transcriptional regulation of α 7 nicotinic acetylcholine receptor by thyroid transcription factor-1 and early growth response factor-1 during murine lung development. J Biol Chem 2005,280(37):32548–54.CrossRefPubMed Reynolds PR, Hoidal JR: Temporal-spatial expression and transcriptional regulation of α 7 nicotinic acetylcholine receptor by thyroid transcription factor-1 and early growth response factor-1 during murine lung development. J Biol Chem 2005,280(37):32548–54.CrossRefPubMed
18.
go back to reference Gahring LC, Persiyanov K, Dunn D, Weiss R, Meyer EL, Rodgers SW: Mouse strain-specific nicotinic acetylcholine receptor expression by inhibitory interneurons and astrocytes in the dorsal hippocampus. J Comp Neurol 2004, 468:334–46.CrossRefPubMed Gahring LC, Persiyanov K, Dunn D, Weiss R, Meyer EL, Rodgers SW: Mouse strain-specific nicotinic acetylcholine receptor expression by inhibitory interneurons and astrocytes in the dorsal hippocampus. J Comp Neurol 2004, 468:334–46.CrossRefPubMed
19.
go back to reference Rogers SW, Mandelzys A, Deneris ES, Cooper E, Heinemann S: The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J Neurosci 1992,12(12):4611–4623.PubMed Rogers SW, Mandelzys A, Deneris ES, Cooper E, Heinemann S: The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. J Neurosci 1992,12(12):4611–4623.PubMed
20.
go back to reference Moser N, Mechawar N, Jones I, Gochberg-Sarver A, Orr-Urtreger A, Plomann M, Salas R, Molles B, Marubio L, Roth U, Maskos U, Winzer-Serhan U, Bourgeois JP, Le Sourd AM, De Biasi M, Schoeder H, Lindstrom J, Maelicke A, Changeux JP, Wevers A: Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem 2007,102(2):479–92.CrossRefPubMed Moser N, Mechawar N, Jones I, Gochberg-Sarver A, Orr-Urtreger A, Plomann M, Salas R, Molles B, Marubio L, Roth U, Maskos U, Winzer-Serhan U, Bourgeois JP, Le Sourd AM, De Biasi M, Schoeder H, Lindstrom J, Maelicke A, Changeux JP, Wevers A: Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem 2007,102(2):479–92.CrossRefPubMed
21.
go back to reference Herber DL, Severance EG, Cuevas J, Morgan D, Gordon MN: Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. J Histochem Cytochem 2004,52(10):1367–76.CrossRefPubMed Herber DL, Severance EG, Cuevas J, Morgan D, Gordon MN: Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. J Histochem Cytochem 2004,52(10):1367–76.CrossRefPubMed
22.
go back to reference Reynolds PR, Mucenski ML, Whitestt JA: Thyroid transcription factor (TTF)-1 regulates the expression of Midkine (MK) during lung morphogenesis. Dev Dyn 2003, 227:227–37.CrossRefPubMed Reynolds PR, Mucenski ML, Whitestt JA: Thyroid transcription factor (TTF)-1 regulates the expression of Midkine (MK) during lung morphogenesis. Dev Dyn 2003, 227:227–37.CrossRefPubMed
23.
go back to reference Reynolds PR, Mucenski ML, LeCras TD, Nichols WC, Whitsett JA: Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 2004,279(35):37124–32.CrossRefPubMed Reynolds PR, Mucenski ML, LeCras TD, Nichols WC, Whitsett JA: Midkine is regulated by hypoxia and causes pulmonary vascular remodeling. J Biol Chem 2004,279(35):37124–32.CrossRefPubMed
24.
go back to reference Maus ADJ, Pereira EFR, Karachunski PI, Horton RM, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM: Human and Rodent Bronchial Epithelial Cells Express Functional Nicotinic Acetylcholine Receptors. Mol Pharmacol 1998, 54:779–88.PubMed Maus ADJ, Pereira EFR, Karachunski PI, Horton RM, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM: Human and Rodent Bronchial Epithelial Cells Express Functional Nicotinic Acetylcholine Receptors. Mol Pharmacol 1998, 54:779–88.PubMed
25.
go back to reference Wang Y, Pereira EFR, Maus ADG, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM: Human Bronchial Epithelial and Endothelial Cells Express α7 Nicotinic Acetylcholine Receptors. Mol Pharmacol 2001, 60:1201–9.PubMed Wang Y, Pereira EFR, Maus ADG, Ostlie NS, Navaneetham D, Lei S, Albuquerque EX, Conti-Fine BM: Human Bronchial Epithelial and Endothelial Cells Express α7 Nicotinic Acetylcholine Receptors. Mol Pharmacol 2001, 60:1201–9.PubMed
26.
go back to reference Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine Is an Autocrine or Paracrine Hormone Synthesized and Secreted by Airway Bronchial Epithelial Cells. Endocrinology 2004, 145:2498–06.CrossRefPubMed Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine Is an Autocrine or Paracrine Hormone Synthesized and Secreted by Airway Bronchial Epithelial Cells. Endocrinology 2004, 145:2498–06.CrossRefPubMed
27.
go back to reference Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX: Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 1997, 9:2734–42.CrossRefPubMed Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX: Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 1997, 9:2734–42.CrossRefPubMed
28.
go back to reference Ikegami M, Lewis JF, Tabor B, Rider ED, Jobe AH: Surfactant protein A metabolism in preterm ventilated lambs. Am J Physiol 1992,262(6 pt 1):L765–72.PubMed Ikegami M, Lewis JF, Tabor B, Rider ED, Jobe AH: Surfactant protein A metabolism in preterm ventilated lambs. Am J Physiol 1992,262(6 pt 1):L765–72.PubMed
29.
go back to reference Perl AKT, Whitsett JA: Molecular mechanisms controlling lung morphogenesis. Clin Genet 1999, 56:14–27.CrossRefPubMed Perl AKT, Whitsett JA: Molecular mechanisms controlling lung morphogenesis. Clin Genet 1999, 56:14–27.CrossRefPubMed
30.
go back to reference Keijzer R, van Tuyl M, Meijers C, Post M, Tibboel D, Grosveld F, Koutsourakis M: The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 2001, 128:503–511.PubMed Keijzer R, van Tuyl M, Meijers C, Post M, Tibboel D, Grosveld F, Koutsourakis M: The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 2001, 128:503–511.PubMed
31.
go back to reference Maeda Y, Dave V, Whitsett JA: Transcriptional control of lung morphogenesis. Physiol Rev 2007, 87:210–44.CrossRef Maeda Y, Dave V, Whitsett JA: Transcriptional control of lung morphogenesis. Physiol Rev 2007, 87:210–44.CrossRef
32.
go back to reference Arredondo J, Chernyavsky Al, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008,22(5):1356–68.CrossRefPubMed Arredondo J, Chernyavsky Al, Jolkovsky DL, Pinkerton KE, Grando SA: Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008,22(5):1356–68.CrossRefPubMed
33.
go back to reference Benowitz NL, Kuyt F, Jacob P: Circadian blood nicotine concentrations during cigarette smoking. Clin Pharmacol Ther 1982, 32:758–64.CrossRefPubMed Benowitz NL, Kuyt F, Jacob P: Circadian blood nicotine concentrations during cigarette smoking. Clin Pharmacol Ther 1982, 32:758–64.CrossRefPubMed
35.
go back to reference Hsia SH, Schulman SR, Meliones JN, Canada AT, Chen SC: Effects of maternal nicotine exposure on branching morphogenesis of mouse fetal lung: in vivo and in vitro studies. Acta Paediatr Taiwan 2003, 44:150–4.PubMed Hsia SH, Schulman SR, Meliones JN, Canada AT, Chen SC: Effects of maternal nicotine exposure on branching morphogenesis of mouse fetal lung: in vivo and in vitro studies. Acta Paediatr Taiwan 2003, 44:150–4.PubMed
36.
37.
go back to reference Tager IB, Hanrahan JP, Tostesan TD, et al.: Lung function, pre- and post-natal smoke exposure, and wheezing in the first year of life. Am Rev Respir Dis 1993, 147:811–17.CrossRefPubMed Tager IB, Hanrahan JP, Tostesan TD, et al.: Lung function, pre- and post-natal smoke exposure, and wheezing in the first year of life. Am Rev Respir Dis 1993, 147:811–17.CrossRefPubMed
38.
go back to reference Sandberg K, Poole SD, Hamdan A, Arbogast P, Sundell HW: Altered lung development after prenatal nicotine exposure in young lambs. Pediatr Res 2004, 56:432–9.CrossRefPubMed Sandberg K, Poole SD, Hamdan A, Arbogast P, Sundell HW: Altered lung development after prenatal nicotine exposure in young lambs. Pediatr Res 2004, 56:432–9.CrossRefPubMed
39.
go back to reference Bierut LJ: Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24–25. Trends Pharmacol Sci 2009, 31:46–51.CrossRefPubMedPubMedCentral Bierut LJ: Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24–25. Trends Pharmacol Sci 2009, 31:46–51.CrossRefPubMedPubMedCentral
40.
go back to reference Spitz MR, Amos CI, Dong Q, Lin J, Wu X: The CHRNA5-A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 2008, 100:1552–1556.CrossRefPubMedPubMedCentral Spitz MR, Amos CI, Dong Q, Lin J, Wu X: The CHRNA5-A3 region on chromosome 15q24–25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 2008, 100:1552–1556.CrossRefPubMedPubMedCentral
41.
go back to reference Pillai SG, Ge D, Zhu G, Kong X, Shianna K, Need A, Feng S, Hersh C, Bakke P, Gulsvik A, Ruppert A, Lodrup C, Roses A, Anderson W, Investigators ICGN, Rennard SI, Lomas DA, Silverman EK, Goldstein DB: A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009, 5:e1000421.CrossRefPubMedPubMedCentral Pillai SG, Ge D, Zhu G, Kong X, Shianna K, Need A, Feng S, Hersh C, Bakke P, Gulsvik A, Ruppert A, Lodrup C, Roses A, Anderson W, Investigators ICGN, Rennard SI, Lomas DA, Silverman EK, Goldstein DB: A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 2009, 5:e1000421.CrossRefPubMedPubMedCentral
Metadata
Title
TTF-1 regulates α5 nicotinic acetylcholine receptor (nAChR) subunits in proximal and distal lung epithelium
Authors
Paul R Reynolds
Camille H Allison
Charles P Willnauer
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2010
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-11-175

Other articles of this Issue 1/2010

Respiratory Research 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine