Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2005

Open Access 01-12-2005 | Research

Trunk muscle activity during bridging exercises on and off a Swissball

Authors: Gregory J Lehman, Wajid Hoda, Steven Oliver

Published in: Chiropractic & Manual Therapies | Issue 1/2005

Login to get access

Abstract

Background

A Swiss ball is often incorporated into trunk strengthening programs for injury rehabilitation and performance conditioning. It is often assumed that the use of a Swiss ball increases trunk muscle activity. The aim of this study was to determine whether the addition of a Swiss ball to trunk bridging exercises influences trunk muscle activity.

Methods

Surface electrodes recorded the myoelectric activity of trunk muscles during bridging exercises. Bridging exercises were performed on the floor as well as on a labile surface (Swiss ball).

Results and Discussion

During the prone bridge the addition of an exercise ball resulted in increased myoelectric activity in the rectus abdominis and external oblique. The internal oblique and erector spinae were not influenced. The addition of a swiss ball during supine bridging did not influence trunk muscle activity for any muscles studied.

Conclusion

The addition of a Swiss ball is capable of influencing trunk muscle activity in the rectus abdominis and external oblique musculature during prone bridge exercises. Modifying common bridging exercises can influence the amount of trunk muscle activity, suggesting that exercise routines can be designed to maximize or minimize trunk muscle exertion depending on the needs of the exercise population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Axler CT, McGill SM: Low back loads over a variety of abdominal exercises: searching for the safest abdominal challenge. Medicine & Science in Sports & Exercise. 1997, 29 (6): 804-810.CrossRef Axler CT, McGill SM: Low back loads over a variety of abdominal exercises: searching for the safest abdominal challenge. Medicine & Science in Sports & Exercise. 1997, 29 (6): 804-810.CrossRef
2.
go back to reference Juker D, McGill S, Kropf P: Quantitative intramuscular myoelectric acitivity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine & Science in Sports & Exercise. 1998, 30 (2): 301-310.CrossRef Juker D, McGill S, Kropf P: Quantitative intramuscular myoelectric acitivity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine & Science in Sports & Exercise. 1998, 30 (2): 301-310.CrossRef
3.
go back to reference Kumar S, Narayan Y: Torque and EMG in isometric graded flexion-rotation and extension-rotation. Ergonomics. 2001, 44 (8): 795-813. 10.1080/00140130110045802.CrossRefPubMed Kumar S, Narayan Y: Torque and EMG in isometric graded flexion-rotation and extension-rotation. Ergonomics. 2001, 44 (8): 795-813. 10.1080/00140130110045802.CrossRefPubMed
4.
go back to reference Lehman GJ, McGill SM: Quantification of the differences in electromyogrphic activity magnitude between the upper and lower portions of the rectus abdominis muscle during selected trunk exercises. Physical Therapy. 2001, 81 (5): 1096-1101.PubMed Lehman GJ, McGill SM: Quantification of the differences in electromyogrphic activity magnitude between the upper and lower portions of the rectus abdominis muscle during selected trunk exercises. Physical Therapy. 2001, 81 (5): 1096-1101.PubMed
5.
go back to reference McGill S, Juker D, Kropf P: Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks. Clinical Biomechanics. 1996, 11 (3): 170-172. 10.1016/0268-0033(95)00056-9.CrossRefPubMed McGill S, Juker D, Kropf P: Quantitative intramuscular myoelectric activity of quadratus lumborum during a wide variety of tasks. Clinical Biomechanics. 1996, 11 (3): 170-172. 10.1016/0268-0033(95)00056-9.CrossRefPubMed
6.
go back to reference Ng JKF, Parnianpour M, Richardson CA: Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. Journal of Orthopaedic Research. 2001, 19: 463-471. 10.1016/S0736-0266(00)90027-5.CrossRefPubMed Ng JKF, Parnianpour M, Richardson CA: Functional roles of abdominal and back muscles during isometric axial rotation of the trunk. Journal of Orthopaedic Research. 2001, 19: 463-471. 10.1016/S0736-0266(00)90027-5.CrossRefPubMed
7.
go back to reference Sarti MA, Monfort M, Fuster MA: Muscle activity in upper and lower rectus abdominus during abdominal exercises. Archives of Physical Medicine and Rehabilitation. 1996, 77: 1293-1297. 10.1016/S0003-9993(96)90195-1.CrossRefPubMed Sarti MA, Monfort M, Fuster MA: Muscle activity in upper and lower rectus abdominus during abdominal exercises. Archives of Physical Medicine and Rehabilitation. 1996, 77: 1293-1297. 10.1016/S0003-9993(96)90195-1.CrossRefPubMed
8.
go back to reference Vera-Garcia FJ, Grenier SG, McGill SM: Abdominal muscle response during curl-ups on both stable and labile surfaces. Physical Therapy. 2000, 80 (6): 564-569.PubMed Vera-Garcia FJ, Grenier SG, McGill SM: Abdominal muscle response during curl-ups on both stable and labile surfaces. Physical Therapy. 2000, 80 (6): 564-569.PubMed
9.
go back to reference Mori A: Electromyographic activity of selected trunk muscles during stabilization exercises using a gym ball. Electromyogr Clin Neurophysiol. 2004, 44 (1): 57-64.PubMed Mori A: Electromyographic activity of selected trunk muscles during stabilization exercises using a gym ball. Electromyogr Clin Neurophysiol. 2004, 44 (1): 57-64.PubMed
10.
go back to reference McGill S, Juker D, Kropf P: Appropriately placed surface EMG electrodes reflect deep muscle activity (Psoas, Quadratus Lumborum, Abdominal Wall) in the lumbar spine. Journal of Biomechanics. 1996, 29 (11): 1503-1507. 10.1016/0021-9290(96)84547-7.CrossRefPubMed McGill S, Juker D, Kropf P: Appropriately placed surface EMG electrodes reflect deep muscle activity (Psoas, Quadratus Lumborum, Abdominal Wall) in the lumbar spine. Journal of Biomechanics. 1996, 29 (11): 1503-1507. 10.1016/0021-9290(96)84547-7.CrossRefPubMed
11.
go back to reference McGill SM: A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. Journal of Biomechanics. 1992, 25 (4): 395-414. 10.1016/0021-9290(92)90259-4.CrossRefPubMed McGill SM: A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. Journal of Biomechanics. 1992, 25 (4): 395-414. 10.1016/0021-9290(92)90259-4.CrossRefPubMed
12.
go back to reference Granata KP, Marras WS: Cost-benefit of muscle cocontraction in protecting against spinal instability. Spine. 2000, 25 (11): 1398-404. 10.1097/00007632-200006010-00012.CrossRefPubMed Granata KP, Marras WS: Cost-benefit of muscle cocontraction in protecting against spinal instability. Spine. 2000, 25 (11): 1398-404. 10.1097/00007632-200006010-00012.CrossRefPubMed
13.
go back to reference Cholewicki J, Panjabi MM, Khachatryan A: Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine. 1997, 22 (19): 2207-12. 10.1097/00007632-199710010-00003.CrossRefPubMed Cholewicki J, Panjabi MM, Khachatryan A: Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine. 1997, 22 (19): 2207-12. 10.1097/00007632-199710010-00003.CrossRefPubMed
Metadata
Title
Trunk muscle activity during bridging exercises on and off a Swissball
Authors
Gregory J Lehman
Wajid Hoda
Steven Oliver
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2005
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/1746-1340-13-14

Other articles of this Issue 1/2005

Chiropractic & Manual Therapies 1/2005 Go to the issue