Skip to main content
Top
Published in: Chiropractic & Manual Therapies 1/2005

Open Access 01-12-2005 | Review

Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

Author: Gary A Knutson

Published in: Chiropractic & Manual Therapies | Issue 1/2005

Login to get access

Abstract

Background

Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided.

Methods

Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality".

Results and Discussion

The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing) posture, but not in an unloaded (prone/supine) posture.

Conclusion

The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Travell JG, Simons DG: Chapter 4, Quadratus Lumborum Muscle. Myofascial Pain and Dysfunction. The Trigger Point Manual. The Lower Extremities. 1999, Williams & Wilkens: Baltimore, 2: 42,35,35,42,107-2 Travell JG, Simons DG: Chapter 4, Quadratus Lumborum Muscle. Myofascial Pain and Dysfunction. The Trigger Point Manual. The Lower Extremities. 1999, Williams & Wilkens: Baltimore, 2: 42,35,35,42,107-2
2.
go back to reference Mannello DM: Leg Length Inequality. J Manipulative Physiol Ther. 1992, 15 (9): 576-590.PubMed Mannello DM: Leg Length Inequality. J Manipulative Physiol Ther. 1992, 15 (9): 576-590.PubMed
3.
go back to reference Walker BF, Buchbinder R: Most commonly used methods of detecting subluxation and the preferred term for its description: a survey of chiropractors in Victoria, Australia. J Manipulative Physiol Ther. 1997, 20: 583-588.PubMed Walker BF, Buchbinder R: Most commonly used methods of detecting subluxation and the preferred term for its description: a survey of chiropractors in Victoria, Australia. J Manipulative Physiol Ther. 1997, 20: 583-588.PubMed
4.
go back to reference White A, Panjabi M: Clinical Biomechanics of the Spine. 1987, Philadelphia: J.B. Lippincott, 96,352- White A, Panjabi M: Clinical Biomechanics of the Spine. 1987, Philadelphia: J.B. Lippincott, 96,352-
5.
go back to reference Gossman MR, Sahrmann SA, Rose SJ: Review of length-associated changes in muscle. Physical Therapy. 1982, 62 (12): 1799-1807.PubMed Gossman MR, Sahrmann SA, Rose SJ: Review of length-associated changes in muscle. Physical Therapy. 1982, 62 (12): 1799-1807.PubMed
6.
go back to reference Giles LGF, Taylor JR: Lumbar spine structural changes associated with leg length inequality. Spine. 1982, 7 (2): 159-162.CrossRefPubMed Giles LGF, Taylor JR: Lumbar spine structural changes associated with leg length inequality. Spine. 1982, 7 (2): 159-162.CrossRefPubMed
7.
go back to reference Knutson G: The supine leg check as a determinant of physiological/postural leg length inequality; a case study and analysis. Chiropr Res J. 2000, VII (1): 8-13. Knutson G: The supine leg check as a determinant of physiological/postural leg length inequality; a case study and analysis. Chiropr Res J. 2000, VII (1): 8-13.
8.
go back to reference Petrone MR, Guinn J, Reddin A, Sutlive TG, Flynn TW, Garber WP: The accuracy of the palpation meter (PALM) for measuring pelvic crest height difference and leg length discrepancy. J Orthop Sports Phys Ther. 2003, 33: 319-25.CrossRefPubMed Petrone MR, Guinn J, Reddin A, Sutlive TG, Flynn TW, Garber WP: The accuracy of the palpation meter (PALM) for measuring pelvic crest height difference and leg length discrepancy. J Orthop Sports Phys Ther. 2003, 33: 319-25.CrossRefPubMed
9.
go back to reference Gibson PH, Papaioannou T, Kenwright J: The influence on the spine of leg-length discrepancy after femoral fracture. J Bone Joint Surg (Br). 1983, 65 (5): 584-7. Gibson PH, Papaioannou T, Kenwright J: The influence on the spine of leg-length discrepancy after femoral fracture. J Bone Joint Surg (Br). 1983, 65 (5): 584-7.
10.
go back to reference Papaioannou T, Stokes I, Kenwright J: Scoliosis associated with limb-length inequality. J Bone Joint Surg. 1982, 64-A (1): 59-62. Papaioannou T, Stokes I, Kenwright J: Scoliosis associated with limb-length inequality. J Bone Joint Surg. 1982, 64-A (1): 59-62.
11.
go back to reference Young RS, Andrew PD, Cummings GS: Effect of simulating leg length inequality on pelvic torsion and trunk mobility. Gait Posture. 2000, 11 (3): 217-23. 10.1016/S0966-6362(00)00048-5.CrossRefPubMed Young RS, Andrew PD, Cummings GS: Effect of simulating leg length inequality on pelvic torsion and trunk mobility. Gait Posture. 2000, 11 (3): 217-23. 10.1016/S0966-6362(00)00048-5.CrossRefPubMed
12.
go back to reference Murrell P, Cornwall MW, Doucet SK: Leg-length discrepancy: effect on the amplitude of postural sway. Arch Phys Med Rehabil. 1991, 72 (9): 646-8.PubMed Murrell P, Cornwall MW, Doucet SK: Leg-length discrepancy: effect on the amplitude of postural sway. Arch Phys Med Rehabil. 1991, 72 (9): 646-8.PubMed
13.
go back to reference Klein KK, Redler I, Lowman CL: Asymmetries of growth in the pelvis and legs of children: A clinical and statistical study 1964–1967. J Am Osteopath Assoc. 1968, 68: 105-108. Klein KK, Redler I, Lowman CL: Asymmetries of growth in the pelvis and legs of children: A clinical and statistical study 1964–1967. J Am Osteopath Assoc. 1968, 68: 105-108.
14.
go back to reference Rhodes DW, Mansfield ER, Bishop PA, Smith JF: Comparison of leg length inequality measurement methods as estimators of the femur head height difference in standing x-ray. J Manipulative Physiol Ther. 1995, 18 (7): 448-452.PubMed Rhodes DW, Mansfield ER, Bishop PA, Smith JF: Comparison of leg length inequality measurement methods as estimators of the femur head height difference in standing x-ray. J Manipulative Physiol Ther. 1995, 18 (7): 448-452.PubMed
15.
go back to reference Cooperstein R, Lisi A: Pelvic torsion: anatomic considerations, construct validity, and chiropractic examination procedures. Top Clin Chiro. 2000, 7 (3): 38-49. Cooperstein R, Lisi A: Pelvic torsion: anatomic considerations, construct validity, and chiropractic examination procedures. Top Clin Chiro. 2000, 7 (3): 38-49.
16.
go back to reference Gossman MR, Sahrmann SA, Rose SJ: Review of length-associated changes in muscle. Physical Therapy. 1982, 62 (12): 1799-1807.PubMed Gossman MR, Sahrmann SA, Rose SJ: Review of length-associated changes in muscle. Physical Therapy. 1982, 62 (12): 1799-1807.PubMed
17.
go back to reference Grostic JD: Dentate ligament – cord distortion hypothesis. Chiropr Res J. 1988, 1 (1): 47-55. Grostic JD: Dentate ligament – cord distortion hypothesis. Chiropr Res J. 1988, 1 (1): 47-55.
18.
go back to reference Knutson G, Owens E: Erector and quadratus lumborum muscle endurance tests and supine leg-length alignment asymmetry: An observational study. (accepted for publication, JMPT 12-03). Knutson G, Owens E: Erector and quadratus lumborum muscle endurance tests and supine leg-length alignment asymmetry: An observational study. (accepted for publication, JMPT 12-03).
19.
go back to reference Mincer AE, Cummings GS, Andrew PD, Rau JL: Effect of leg length discrepancy on trunk muscle fatigue and unintended trunk movement. J Phys Ther Sci. 1997, 9 (1): 1-6. 10.1589/jpts.9.1.CrossRef Mincer AE, Cummings GS, Andrew PD, Rau JL: Effect of leg length discrepancy on trunk muscle fatigue and unintended trunk movement. J Phys Ther Sci. 1997, 9 (1): 1-6. 10.1589/jpts.9.1.CrossRef
20.
go back to reference McGill SM, Childs A, Liebenson C: Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999, 80: 941-944. 10.1016/S0003-9993(99)90087-4.CrossRefPubMed McGill SM, Childs A, Liebenson C: Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999, 80: 941-944. 10.1016/S0003-9993(99)90087-4.CrossRefPubMed
21.
go back to reference Andersson EA, Oddsson LI, Grundstrom H, Nilsson J, Thorstensson A: EMG activities of the quadratus lumborum and erector spinae muscles during flexion-relaxation and other motor tasks. Clin Biomech. 1996, 11 (7): 392-400. 10.1016/0268-0033(96)00033-2.CrossRef Andersson EA, Oddsson LI, Grundstrom H, Nilsson J, Thorstensson A: EMG activities of the quadratus lumborum and erector spinae muscles during flexion-relaxation and other motor tasks. Clin Biomech. 1996, 11 (7): 392-400. 10.1016/0268-0033(96)00033-2.CrossRef
22.
go back to reference Indahl A, Kaigle A, Reikeras O, Holm S: Sacroiliac joint involvement in activation of the porcine spinal and gluteal musculature. J Spinal Disord. 1999, 12 (4): 325-30.PubMed Indahl A, Kaigle A, Reikeras O, Holm S: Sacroiliac joint involvement in activation of the porcine spinal and gluteal musculature. J Spinal Disord. 1999, 12 (4): 325-30.PubMed
23.
go back to reference Allum JHJ, Honnegger F: Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Exp Brain Res. 1998, 121: 478-494. 10.1007/s002210050484.CrossRefPubMed Allum JHJ, Honnegger F: Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Exp Brain Res. 1998, 121: 478-494. 10.1007/s002210050484.CrossRefPubMed
24.
go back to reference Nguyen HT, Resnick DN, Caldwell SG, Elston EW, Bishop BB, Steinhouser JB, Gimmillaro TJ, Keating JC: Inter-examiner reliability of Activator methods relative to leg length evaluation in the prone, extended position. J Manipulative Physiol Ther. 1999, 22: 565-9.CrossRefPubMed Nguyen HT, Resnick DN, Caldwell SG, Elston EW, Bishop BB, Steinhouser JB, Gimmillaro TJ, Keating JC: Inter-examiner reliability of Activator methods relative to leg length evaluation in the prone, extended position. J Manipulative Physiol Ther. 1999, 22: 565-9.CrossRefPubMed
25.
go back to reference Hinson R, Brown SH: Supine leg length differential estimation: an inter- and intra-examiner reliability study. Chiropr Res J. 1998, 5: 17-22. Hinson R, Brown SH: Supine leg length differential estimation: an inter- and intra-examiner reliability study. Chiropr Res J. 1998, 5: 17-22.
26.
go back to reference Cooperstein R, Morschhauser E, Lisi A, Nick TG: Validity of compressive leg checking in measuring artificial leg-length inequality. J Manipulative Physiol Ther. 2003, 26 (9): 557-66. 10.1016/j.jmpt.2003.08.002.CrossRefPubMed Cooperstein R, Morschhauser E, Lisi A, Nick TG: Validity of compressive leg checking in measuring artificial leg-length inequality. J Manipulative Physiol Ther. 2003, 26 (9): 557-66. 10.1016/j.jmpt.2003.08.002.CrossRefPubMed
27.
go back to reference Knutson G: Incidence of foot rotation, pelvic crest unleveling, and supine leg length alignment asymmetry, and their relationship to self-reported back pain. J Manipulative Physiol Ther. 2002, 24: e1-10.1067/mmt.2002.121414.CrossRef Knutson G: Incidence of foot rotation, pelvic crest unleveling, and supine leg length alignment asymmetry, and their relationship to self-reported back pain. J Manipulative Physiol Ther. 2002, 24: e1-10.1067/mmt.2002.121414.CrossRef
28.
go back to reference Knutson G, Owens E: Leg length Alignment Asymmetry in a Non-clinical Population and its Correlation to a Decrease in General Health as Measured by the SF-12: A Pilot Study. Journal of Vertebral Subluxation Research. 2004, 1: 1-5. Knutson G, Owens E: Leg length Alignment Asymmetry in a Non-clinical Population and its Correlation to a Decrease in General Health as Measured by the SF-12: A Pilot Study. Journal of Vertebral Subluxation Research. 2004, 1: 1-5.
29.
go back to reference Pollard H, Ward G: The effect of upper cervical or sacroiliac manipulation on hip flexion range of motion. J Manipulative Physiol Ther. 1998, 21 (9): 611-616.PubMed Pollard H, Ward G: The effect of upper cervical or sacroiliac manipulation on hip flexion range of motion. J Manipulative Physiol Ther. 1998, 21 (9): 611-616.PubMed
30.
go back to reference Nansel DD, Waldorf T, Cooperstein R: Effect of cervical spinal adjustments on lumbar paraspinal muscle tone: Evidence for facilitation of intersegmental tonic neck reflexes. J Manipulative Physiol Ther. 1993, 16 (2): 91-95.PubMed Nansel DD, Waldorf T, Cooperstein R: Effect of cervical spinal adjustments on lumbar paraspinal muscle tone: Evidence for facilitation of intersegmental tonic neck reflexes. J Manipulative Physiol Ther. 1993, 16 (2): 91-95.PubMed
31.
go back to reference Seemann DE: Bilateral weight differential and functional short leg: an analysis of pre and post data after reduction of atlas subluxation. Chiropr Res J. 1993, 2 (3): 33-8. Seemann DE: Bilateral weight differential and functional short leg: an analysis of pre and post data after reduction of atlas subluxation. Chiropr Res J. 1993, 2 (3): 33-8.
32.
go back to reference Seemann DE: Anatometer measurements: a field study intra- and inter-examiner reliability and pre to post changes following an atlas adjustment. Chiropr Res J. 1999, VI (1): 7-9. Seemann DE: Anatometer measurements: a field study intra- and inter-examiner reliability and pre to post changes following an atlas adjustment. Chiropr Res J. 1999, VI (1): 7-9.
33.
go back to reference Kondziella W: Clinical and functional diagnosis and treatment of low-back pain from pelvic malposition. Schmerz. 1996, 10 (4): 204-10. 10.1007/s004820050041. (article in German).CrossRefPubMed Kondziella W: Clinical and functional diagnosis and treatment of low-back pain from pelvic malposition. Schmerz. 1996, 10 (4): 204-10. 10.1007/s004820050041. (article in German).CrossRefPubMed
34.
go back to reference McCaw ST: Leg Length Inequality. Implications for running injury prevention. Sports Medicine. 1992, 14 (6): 422-429.CrossRefPubMed McCaw ST: Leg Length Inequality. Implications for running injury prevention. Sports Medicine. 1992, 14 (6): 422-429.CrossRefPubMed
35.
go back to reference Friberg O: Clinical symptoms and biomechanics of lumbar spine and hip joint in leg length inequality. Spine. 1983, 8 (6): 643-651.CrossRefPubMed Friberg O: Clinical symptoms and biomechanics of lumbar spine and hip joint in leg length inequality. Spine. 1983, 8 (6): 643-651.CrossRefPubMed
36.
go back to reference Beattie P, Isaacson K, Riddle DL, Rothstein JM: Validity of derived measurements of leg-length differences obtained by use of a tape measure. Phys Ther. 1990, 70 (3): 150-7.PubMed Beattie P, Isaacson K, Riddle DL, Rothstein JM: Validity of derived measurements of leg-length differences obtained by use of a tape measure. Phys Ther. 1990, 70 (3): 150-7.PubMed
37.
go back to reference Hanada E, Kirby RL, Mitchell M, Swuste JM: Measuring leg-length discrepancy by the "iliac crest palpation and book correction" method: Reliability and validity. Arch Phys Med Rehabil. 2001, 82 (7): 938-42. 10.1053/apmr.2001.22622.CrossRefPubMed Hanada E, Kirby RL, Mitchell M, Swuste JM: Measuring leg-length discrepancy by the "iliac crest palpation and book correction" method: Reliability and validity. Arch Phys Med Rehabil. 2001, 82 (7): 938-42. 10.1053/apmr.2001.22622.CrossRefPubMed
38.
go back to reference Aspegren DD, Cox JM, Trier KK: Short leg correction: A clinical trial of radiographic vs non-radiographic procedures. J Manipulative Physiol Ther. 1987, 10 (5): 232-238.PubMed Aspegren DD, Cox JM, Trier KK: Short leg correction: A clinical trial of radiographic vs non-radiographic procedures. J Manipulative Physiol Ther. 1987, 10 (5): 232-238.PubMed
39.
go back to reference Danbert RJ: Clinical assessment and treatment of leg length inequalities. J Manipulative Physiol Ther. 1988, 11 (4): 290-295.PubMed Danbert RJ: Clinical assessment and treatment of leg length inequalities. J Manipulative Physiol Ther. 1988, 11 (4): 290-295.PubMed
Metadata
Title
Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry
Author
Gary A Knutson
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Chiropractic & Manual Therapies / Issue 1/2005
Electronic ISSN: 2045-709X
DOI
https://doi.org/10.1186/1746-1340-13-12

Other articles of this Issue 1/2005

Chiropractic & Manual Therapies 1/2005 Go to the issue