Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Review

Tropism and molecular pathogenesis of canine distemper virus

Authors: Santiago Rendon-Marin, Renata da Fontoura Budaszewski, Cláudio Wageck Canal, Julian Ruiz-Saenz

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Canine distemper virus (CDV), currently termed Canine morbillivirus, is an extremely contagious disease that affects dogs. It is identified as a multiple cell tropism pathogen, and its host range includes a vast array of species. As a member of Mononegavirales, CDV has a negative, single-stranded RNA genome, which encodes eight proteins.

Main body

Regarding the molecular pathogenesis, the hemagglutinin protein (H) plays a crucial role both in the antigenic recognition and the viral interaction with SLAM and nectin-4, the host cells’ receptors. These cellular receptors have been studied widely as CDV receptors in vitro in different cellular models. The SLAM receptor is located in lymphoid cells; therefore, the infection of these cells by CDV leads to immunosuppression, the severity of which can lead to variability in the clinical disease with the potential of secondary bacterial infection, up to and including the development of neurological signs in its later stage.

Conclusion

Improving the understanding of the CDV molecules implicated in the determination of infection, especially the H protein, can help to enhance the biochemical comprehension of the difference between a wide range of CDV variants, their tropism, and different steps in viral infection. The regions of interaction between the viral proteins and the identified host cell receptors have been elucidated to facilitate this understanding. Hence, this review describes the significant molecular and cellular characteristics of CDV that contribute to viral pathogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Murphy FA, Fauquet CM, Bishop DH, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD: Virus taxonomy: classification and nomenclature of viruses. Springer Science & Business Media; 2012. Murphy FA, Fauquet CM, Bishop DH, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD: Virus taxonomy: classification and nomenclature of viruses. Springer Science & Business Media; 2012.
2.
go back to reference MacLachlan N, Dubovi E, Fenner F: Paramyxoviridae. 2011. MacLachlan N, Dubovi E, Fenner F: Paramyxoviridae. 2011.
3.
go back to reference Lempp C, Spitzbarth I, Puff C, Cana A, Kegler K, Techangamsuwan S, Baumgartner W, Seehusen F. New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses. 2014;6:2571–601.CrossRefPubMedPubMedCentral Lempp C, Spitzbarth I, Puff C, Cana A, Kegler K, Techangamsuwan S, Baumgartner W, Seehusen F. New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses. 2014;6:2571–601.CrossRefPubMedPubMedCentral
4.
go back to reference Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res. 2016;12:78.CrossRefPubMedPubMedCentral Martinez-Gutierrez M, Ruiz-Saenz J. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res. 2016;12:78.CrossRefPubMedPubMedCentral
6.
go back to reference da Fontoura BR, Streck AF, Nunes Weber M, Maboni Siqueira F, Muniz Guedes RL, Wageck Canal C. Influence of vaccine strains on the evolution of canine distemper virus. Infect Genet Evol. 2016;41:262–9.CrossRef da Fontoura BR, Streck AF, Nunes Weber M, Maboni Siqueira F, Muniz Guedes RL, Wageck Canal C. Influence of vaccine strains on the evolution of canine distemper virus. Infect Genet Evol. 2016;41:262–9.CrossRef
7.
go back to reference Kolakofsky D. Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: a review. Virology. 2016;498:94–8.CrossRefPubMed Kolakofsky D. Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: a review. Virology. 2016;498:94–8.CrossRefPubMed
8.
go back to reference da Fontoura BR, von Messling V. Morbillivirus experimental animal models: measles virus pathogenesis insights from canine distemper virus. Viruses. 2016;8. da Fontoura BR, von Messling V. Morbillivirus experimental animal models: measles virus pathogenesis insights from canine distemper virus. Viruses. 2016;8.
9.
go back to reference Cattaneo R, Kaelin K, Baczko K, Billeter MA. Measles virus editing provides an additional cysteine-rich protein. Cell. 1989;56:759–64.CrossRefPubMed Cattaneo R, Kaelin K, Baczko K, Billeter MA. Measles virus editing provides an additional cysteine-rich protein. Cell. 1989;56:759–64.CrossRefPubMed
10.
go back to reference Mahy BW, Van Regenmortel MH. Desk encyclopedia animal and bacterial virology. Cambridge: Elsevier; 2010. Mahy BW, Van Regenmortel MH. Desk encyclopedia animal and bacterial virology. Cambridge: Elsevier; 2010.
11.
go back to reference von Messling V, Svitek N, Cattaneo R. Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol. 2006;80:6084–92.CrossRef von Messling V, Svitek N, Cattaneo R. Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol. 2006;80:6084–92.CrossRef
12.
go back to reference von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol. 2001;75:6418–27.CrossRef von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol. 2001;75:6418–27.CrossRef
13.
go back to reference Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. 2005;310:77–80.CrossRefPubMed Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science. 2005;310:77–80.CrossRefPubMed
14.
go back to reference von Messling V, Oezguen N, Zheng Q, Vongpunsawad S, Braun W, Cattaneo R. Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells. J Virol. 2005;79:5857–62.CrossRef von Messling V, Oezguen N, Zheng Q, Vongpunsawad S, Braun W, Cattaneo R. Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells. J Virol. 2005;79:5857–62.CrossRef
15.
go back to reference Pratakpiriya W, Seki F, Otsuki N, Sakai K, Fukuhara H, Katamoto H, Hirai T, Maenaka K, Techangamsuwan S, Lan NT: Nectin4 is an epithelial cell receptor for canine distemper virus and involved in the neurovirulence. J Virol 2012:JVI. 00824–00812. Pratakpiriya W, Seki F, Otsuki N, Sakai K, Fukuhara H, Katamoto H, Hirai T, Maenaka K, Techangamsuwan S, Lan NT: Nectin4 is an epithelial cell receptor for canine distemper virus and involved in the neurovirulence. J Virol 2012:JVI. 00824–00812.
16.
go back to reference Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480:530.CrossRefPubMedPubMedCentral Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480:530.CrossRefPubMedPubMedCentral
17.
go back to reference Chen J, Liang X, Chen PF. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells. Virol Sin. 2011;26:139–45.CrossRefPubMed Chen J, Liang X, Chen PF. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells. Virol Sin. 2011;26:139–45.CrossRefPubMed
18.
go back to reference Ke GM, Ho CH, Chiang MJ, Sanno-Duanda B, Chung CS, Lin MY, Shi YY, Yang MH, Tyan YC, Liao PC, Chu PY. Phylodynamic analysis of the canine distemper virus hemagglutinin gene. BMC Vet Res. 2015;11:164.CrossRefPubMedPubMedCentral Ke GM, Ho CH, Chiang MJ, Sanno-Duanda B, Chung CS, Lin MY, Shi YY, Yang MH, Tyan YC, Liao PC, Chu PY. Phylodynamic analysis of the canine distemper virus hemagglutinin gene. BMC Vet Res. 2015;11:164.CrossRefPubMedPubMedCentral
19.
go back to reference Mochizuki M, Hashimoto M, Hagiwara S, Yoshida Y, Ishiguro S. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J Clin Microbiol. 1999;37:2936–42.PubMedPubMedCentral Mochizuki M, Hashimoto M, Hagiwara S, Yoshida Y, Ishiguro S. Genotypes of canine distemper virus determined by analysis of the hemagglutinin genes of recent isolates from dogs in Japan. J Clin Microbiol. 1999;37:2936–42.PubMedPubMedCentral
20.
go back to reference Anis E, Newell TK, Dyer N, Wilkes RP. Phylogenetic analysis of the wild-type strains of canine distemper virus circulating in the United States. Virol J. 2018;15:118.CrossRefPubMedPubMedCentral Anis E, Newell TK, Dyer N, Wilkes RP. Phylogenetic analysis of the wild-type strains of canine distemper virus circulating in the United States. Virol J. 2018;15:118.CrossRefPubMedPubMedCentral
21.
go back to reference Blixenkrone-Møller M, Svansson V, Appel M, Krogsrud J, Have P, Örvell C. Antigenic relationships between field isolates of morbilliviruses from different carnivores. Arch Virol. 1992;123:279–94.CrossRefPubMed Blixenkrone-Møller M, Svansson V, Appel M, Krogsrud J, Have P, Örvell C. Antigenic relationships between field isolates of morbilliviruses from different carnivores. Arch Virol. 1992;123:279–94.CrossRefPubMed
22.
go back to reference Espinal MA, Diaz FJ, Ruiz-Saenz J. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America. Vet Microbiol. 2014;172:168–76.CrossRefPubMed Espinal MA, Diaz FJ, Ruiz-Saenz J. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America. Vet Microbiol. 2014;172:168–76.CrossRefPubMed
23.
go back to reference Haas L, Martens W, Greiser-Wilke I, Mamaev L, Butina T, Maack D, Barrett T. Analysis of the haemagglutinin gene of current wild-type canine distemper virus isolates from Germany. Virus Res. 1997;48:165–71.CrossRefPubMed Haas L, Martens W, Greiser-Wilke I, Mamaev L, Butina T, Maack D, Barrett T. Analysis of the haemagglutinin gene of current wild-type canine distemper virus isolates from Germany. Virus Res. 1997;48:165–71.CrossRefPubMed
24.
go back to reference Harder TC, Kenter M, Vos H, Siebelink K, Huisman W, van Amerongen G, Orvell C, Barrett T, Appel MJ, Osterhaus AD. Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships. J Gen Virol. 1996;77(Pt 3):397–405.CrossRefPubMed Harder TC, Kenter M, Vos H, Siebelink K, Huisman W, van Amerongen G, Orvell C, Barrett T, Appel MJ, Osterhaus AD. Canine distemper virus from diseased large felids: biological properties and phylogenetic relationships. J Gen Virol. 1996;77(Pt 3):397–405.CrossRefPubMed
25.
go back to reference Iwatsuki K, Tokiyoshi S, Hirayama N, Nakamura K, Ohashi K, Wakasa C, Mikami T, Kai C. Antigenic differences in the H proteins of canine distemper viruses. Vet Microbiol. 2000;71:281–6.CrossRefPubMed Iwatsuki K, Tokiyoshi S, Hirayama N, Nakamura K, Ohashi K, Wakasa C, Mikami T, Kai C. Antigenic differences in the H proteins of canine distemper viruses. Vet Microbiol. 2000;71:281–6.CrossRefPubMed
26.
go back to reference Panzera Y, Calderon MG, Sarute N, Guasco S, Cardeillac A, Bonilla B, Hernandez M, Francia L, Bedo G, La Torre J, Perez R. Evidence of two co-circulating genetic lineages of canine distemper virus in South America. Virus Res. 2012;163:401–4.CrossRefPubMed Panzera Y, Calderon MG, Sarute N, Guasco S, Cardeillac A, Bonilla B, Hernandez M, Francia L, Bedo G, La Torre J, Perez R. Evidence of two co-circulating genetic lineages of canine distemper virus in South America. Virus Res. 2012;163:401–4.CrossRefPubMed
27.
go back to reference Riley MC, Wilkes RP. Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations. Virol J. 2015;12:219.CrossRefPubMedPubMedCentral Riley MC, Wilkes RP. Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations. Virol J. 2015;12:219.CrossRefPubMedPubMedCentral
28.
go back to reference Nikolin VM, Olarte-Castillo XA, Osterrieder N, Hofer H, Dubovi E, Mazzoni CJ, Brunner E, Goller KV, Fyumagwa RD, Moehlman PD, et al. Canine distemper virus in the Serengeti ecosystem: molecular adaptation to different carnivore species. Mol Ecol. 2017;26:2111–30.CrossRefPubMed Nikolin VM, Olarte-Castillo XA, Osterrieder N, Hofer H, Dubovi E, Mazzoni CJ, Brunner E, Goller KV, Fyumagwa RD, Moehlman PD, et al. Canine distemper virus in the Serengeti ecosystem: molecular adaptation to different carnivore species. Mol Ecol. 2017;26:2111–30.CrossRefPubMed
29.
go back to reference Zhao JJ, Yan XJ, Chai XL, Martella V, Luo GL, Zhang HL, Gao H, Liu YX, Bai X, Zhang L, et al. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon dogs and minks in China. Vet Microbiol. 2010;140:34–42.CrossRefPubMed Zhao JJ, Yan XJ, Chai XL, Martella V, Luo GL, Zhang HL, Gao H, Liu YX, Bai X, Zhang L, et al. Phylogenetic analysis of the haemagglutinin gene of canine distemper virus strains detected from breeding foxes, raccoon dogs and minks in China. Vet Microbiol. 2010;140:34–42.CrossRefPubMed
30.
go back to reference Radtanakatikanon A, Keawcharoen J, Charoenvisal NT, Poovorawan Y, Prompetchara E, Yamaguchi R, Techangamsuwan S. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand. Vet Microbiol. 2013;166:76–83.CrossRefPubMed Radtanakatikanon A, Keawcharoen J, Charoenvisal NT, Poovorawan Y, Prompetchara E, Yamaguchi R, Techangamsuwan S. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand. Vet Microbiol. 2013;166:76–83.CrossRefPubMed
31.
go back to reference Martella V, Blixenkrone-Moller M, Elia G, Lucente MS, Cirone F, Decaro N, Nielsen L, Banyai K, Carmichael LE, Buonavoglia C. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain. Vaccine. 2011;29:1222–7.CrossRefPubMed Martella V, Blixenkrone-Moller M, Elia G, Lucente MS, Cirone F, Decaro N, Nielsen L, Banyai K, Carmichael LE, Buonavoglia C. Lights and shades on an historical vaccine canine distemper virus, the Rockborn strain. Vaccine. 2011;29:1222–7.CrossRefPubMed
32.
go back to reference Nagao Y, Nishio Y, Shiomoda H, Tamaru S, Shimojima M, Goto M, Une Y, Sato A, Ikebe Y, Maeda K. An outbreak of canine distemper virus in tigers (Panthera tigris): possible transmission from wild animals to zoo animals. J Vet Med Sci. 2012;74:699–705.CrossRefPubMed Nagao Y, Nishio Y, Shiomoda H, Tamaru S, Shimojima M, Goto M, Une Y, Sato A, Ikebe Y, Maeda K. An outbreak of canine distemper virus in tigers (Panthera tigris): possible transmission from wild animals to zoo animals. J Vet Med Sci. 2012;74:699–705.CrossRefPubMed
33.
go back to reference Anis E, Holford AL, Galyon GD, Wilkes RP. Antigenic analysis of genetic variants of canine distemper virus. Vet Microbiol. 2018;219:154–60.CrossRefPubMed Anis E, Holford AL, Galyon GD, Wilkes RP. Antigenic analysis of genetic variants of canine distemper virus. Vet Microbiol. 2018;219:154–60.CrossRefPubMed
34.
go back to reference Beaty SM, Park A, Won ST, Hong P, Lyons M, Vigant F, Freiberg AN, tenOever BR, Duprex WP, Lee B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere. 2017;2(2). Beaty SM, Park A, Won ST, Hong P, Lyons M, Vigant F, Freiberg AN, tenOever BR, Duprex WP, Lee B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere. 2017;2(2).
36.
go back to reference Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol. 1999;73:9568–75.PubMedPubMedCentral Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol. 1999;73:9568–75.PubMedPubMedCentral
37.
go back to reference Duprex WP, Mcquaid S, Roscic-Mrkic B, Cattaneo R, Mccallister C, Rima BK. In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol. 2000;74:7972–9.CrossRefPubMedPubMedCentral Duprex WP, Mcquaid S, Roscic-Mrkic B, Cattaneo R, Mccallister C, Rima BK. In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol. 2000;74:7972–9.CrossRefPubMedPubMedCentral
38.
go back to reference Ludlow M, Nguyen DT, Silin D, Lyubomska O, de Vries RD, von Messling V, McQuaid S, De Swart RL, Duprex WP. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol. 2012;86:7508–19.CrossRefPubMedPubMedCentral Ludlow M, Nguyen DT, Silin D, Lyubomska O, de Vries RD, von Messling V, McQuaid S, De Swart RL, Duprex WP. Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol. 2012;86:7508–19.CrossRefPubMedPubMedCentral
39.
go back to reference Von Messling V, Milosevic D, Cattaneo R. Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A. 2004;101:14216–21.CrossRef Von Messling V, Milosevic D, Cattaneo R. Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A. 2004;101:14216–21.CrossRef
40.
go back to reference Sawatsky B, Cattaneo R, von Messling V: Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on SLAM-Dependent Entry. J Virol 2018:JVI. 00669–00618. Sawatsky B, Cattaneo R, von Messling V: Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on SLAM-Dependent Entry. J Virol 2018:JVI. 00669–00618.
41.
go back to reference de Vries RD, Ludlow M, de Jong A, Rennick LJ, Verburgh RJ, van Amerongen G, van Riel D, van Run P, Herfst S, Kuiken T, et al. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog. 2017;13:e1006371.CrossRefPubMedPubMedCentral de Vries RD, Ludlow M, de Jong A, Rennick LJ, Verburgh RJ, van Amerongen G, van Riel D, van Run P, Herfst S, Kuiken T, et al. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog. 2017;13:e1006371.CrossRefPubMedPubMedCentral
42.
go back to reference Stephensen CB, Welter J, Thaker SR, Taylor J, Tartaglia J, Paoletti E. Canine distemper virus (CDV) infection of ferrets as a model for testing morbillivirus vaccine strategies: NYVAC-and ALVAC-based CDV recombinants protect against symptomatic infection. J Virol. 1997;71:1506–13.PubMedPubMedCentral Stephensen CB, Welter J, Thaker SR, Taylor J, Tartaglia J, Paoletti E. Canine distemper virus (CDV) infection of ferrets as a model for testing morbillivirus vaccine strategies: NYVAC-and ALVAC-based CDV recombinants protect against symptomatic infection. J Virol. 1997;71:1506–13.PubMedPubMedCentral
43.
go back to reference Wang F-X, Zhang S-Q, Zhu H-W, Yang Y, Sun N, Tan B, Li Z-G, Cheng S-P, Fu ZF, Wen Y-J. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge. Vet Microbiol. 2014;174:362–71.CrossRefPubMed Wang F-X, Zhang S-Q, Zhu H-W, Yang Y, Sun N, Tan B, Li Z-G, Cheng S-P, Fu ZF, Wen Y-J. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge. Vet Microbiol. 2014;174:362–71.CrossRefPubMed
44.
go back to reference da Fontoura Budaszewski R, Hudacek A, Sawatsky B, Krämer B, Xiangping Y, Schnell MJ, von Messling V: Inactivated Recombinant Rabies Viruses Displaying the Canine Distemper Virus Glycoproteins Induce Protective Immunity Against Both Pathogens. J Virol 2017:JVI. 02077–02016. da Fontoura Budaszewski R, Hudacek A, Sawatsky B, Krämer B, Xiangping Y, Schnell MJ, von Messling V: Inactivated Recombinant Rabies Viruses Displaying the Canine Distemper Virus Glycoproteins Induce Protective Immunity Against Both Pathogens. J Virol 2017:JVI. 02077–02016.
45.
go back to reference Wang X, Feng N, Ge J, Shuai L, Peng L, Gao Y, Yang S, Xia X, Bu Z. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper. Vaccine. 2012;30:5067–72.CrossRefPubMed Wang X, Feng N, Ge J, Shuai L, Peng L, Gao Y, Yang S, Xia X, Bu Z. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper. Vaccine. 2012;30:5067–72.CrossRefPubMed
46.
go back to reference Avila M, Khosravi M, Alves L, Ader-Ebert N, Bringolf F, Zurbriggen A, Plemper RK, Plattet P. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. J Virol. 2015;89:1445–51.CrossRefPubMed Avila M, Khosravi M, Alves L, Ader-Ebert N, Bringolf F, Zurbriggen A, Plemper RK, Plattet P. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. J Virol. 2015;89:1445–51.CrossRefPubMed
47.
go back to reference Beineke A, Puff C, Seehusen F, Baumgartner W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol. 2009;127:1–18.CrossRefPubMed Beineke A, Puff C, Seehusen F, Baumgartner W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol. 2009;127:1–18.CrossRefPubMed
48.
go back to reference Amude A, Alfieri A, Alfieri A. Clinicopathological findings in dogs with distemper encephalomyelitis presented without characteristic signs of the disease. Res Vet Sci. 2007;82:416–22.CrossRefPubMed Amude A, Alfieri A, Alfieri A. Clinicopathological findings in dogs with distemper encephalomyelitis presented without characteristic signs of the disease. Res Vet Sci. 2007;82:416–22.CrossRefPubMed
49.
go back to reference Koutinas AF, Baumgartner W, Tontis D, Polizopoulou Z, Saridomichelakis MN, Lekkas S. Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (hard pad disease) in dogs with natural canine distemper. Vet Pathol. 2004;41:2–9.CrossRefPubMed Koutinas AF, Baumgartner W, Tontis D, Polizopoulou Z, Saridomichelakis MN, Lekkas S. Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (hard pad disease) in dogs with natural canine distemper. Vet Pathol. 2004;41:2–9.CrossRefPubMed
50.
go back to reference Vandevelde M, Zurbriggen A. Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 2005;109:56–68.CrossRefPubMed Vandevelde M, Zurbriggen A. Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 2005;109:56–68.CrossRefPubMed
51.
go back to reference Schobesberger M, Summerfield A, Doherr MG, Zurbriggen A, Griot C. Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis. Vet Immunol Immunopathol. 2005;104:33–44.CrossRefPubMed Schobesberger M, Summerfield A, Doherr MG, Zurbriggen A, Griot C. Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis. Vet Immunol Immunopathol. 2005;104:33–44.CrossRefPubMed
52.
go back to reference Ulrich R, Puff C, Wewetzer K, Kalkuhl A, Deschl U, Baumgartner W. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One. 2014;9:e95917.CrossRefPubMedPubMedCentral Ulrich R, Puff C, Wewetzer K, Kalkuhl A, Deschl U, Baumgartner W. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One. 2014;9:e95917.CrossRefPubMedPubMedCentral
53.
go back to reference Stettler M, Zurbriggen A. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus. Vet Microbiol. 1995;44:211–7.CrossRefPubMed Stettler M, Zurbriggen A. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus. Vet Microbiol. 1995;44:211–7.CrossRefPubMed
54.
go back to reference Ortin J, Martin-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology. 2015;479-480:532–44.CrossRefPubMed Ortin J, Martin-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology. 2015;479-480:532–44.CrossRefPubMed
55.
56.
go back to reference Bringolf F, Herren M, Wyss M, Vidondo B, Langedijk JP, Zurbriggen A, Plattet P. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity. J Virol. 2017;91:JVI:00521–17. Bringolf F, Herren M, Wyss M, Vidondo B, Langedijk JP, Zurbriggen A, Plattet P. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity. J Virol. 2017;91:JVI:00521–17.
57.
go back to reference Otsuki N, Nakatsu Y, Kubota T, Sekizuka T, Seki F, Sakai K, Kuroda M, Yamaguchi R, Takeda M. The V protein of canine distemper virus is required for virus replication in human epithelial cells. PLoS One. 2013;8:e82343.CrossRefPubMedPubMedCentral Otsuki N, Nakatsu Y, Kubota T, Sekizuka T, Seki F, Sakai K, Kuroda M, Yamaguchi R, Takeda M. The V protein of canine distemper virus is required for virus replication in human epithelial cells. PLoS One. 2013;8:e82343.CrossRefPubMedPubMedCentral
58.
go back to reference Avila M, Alves L, Khosravi M, Ader-Ebert N, Origgi F, Schneider-Schaulies J, Zurbriggen A, Plemper RK, Plattet P. Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. J Virol. 2014;88:2951–66.CrossRefPubMedPubMedCentral Avila M, Alves L, Khosravi M, Ader-Ebert N, Origgi F, Schneider-Schaulies J, Zurbriggen A, Plemper RK, Plattet P. Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. J Virol. 2014;88:2951–66.CrossRefPubMedPubMedCentral
59.
go back to reference Khosravi M, Bringolf F, Rothlisberger S, Bieringer M, Schneider-Schaulies J, Zurbriggen A, Origgi F, Plattet P. Canine distemper virus fusion activation: critical role of residue E123 of CD150/SLAM. J Virol. 2016;90:1622–37.CrossRefPubMedPubMedCentral Khosravi M, Bringolf F, Rothlisberger S, Bieringer M, Schneider-Schaulies J, Zurbriggen A, Origgi F, Plattet P. Canine distemper virus fusion activation: critical role of residue E123 of CD150/SLAM. J Virol. 2016;90:1622–37.CrossRefPubMedPubMedCentral
62.
go back to reference Das K, Arnold E. Negative-Strand RNA virus L proteins: one machine, many activities. Cell. 2015;162:239–41.CrossRefPubMed Das K, Arnold E. Negative-Strand RNA virus L proteins: one machine, many activities. Cell. 2015;162:239–41.CrossRefPubMed
63.
go back to reference Lamb RA. Paramyxoviridae: the viruses and their replication; 2001. Lamb RA. Paramyxoviridae: the viruses and their replication; 2001.
64.
go back to reference Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus Pathogenesis and Virus–Host Interactions. In: Adv Virus Res. vol. 100. Cambridge: Elsevier; 2018; p. 75–98. Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus Pathogenesis and Virus–Host Interactions. In: Adv Virus Res. vol. 100. Cambridge: Elsevier; 2018; p. 75–98.
65.
go back to reference Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3′ UTR contribute to control of replication efficiency and virulence. PLoS One. 2012;7:e31561.CrossRefPubMedPubMedCentral Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3′ UTR contribute to control of replication efficiency and virulence. PLoS One. 2012;7:e31561.CrossRefPubMedPubMedCentral
66.
go back to reference von Messling V, Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J Virol. 2002;76:4172–80.CrossRef von Messling V, Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J Virol. 2002;76:4172–80.CrossRef
67.
go back to reference Anderson DE, Von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82:10510–8.CrossRefPubMedPubMedCentral Anderson DE, Von Messling V. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol. 2008;82:10510–8.CrossRefPubMedPubMedCentral
68.
go back to reference Stettler M, Beck K, Wagner A, Vandevelde M, Zurbriggen A. Determinants of persistence in canine distemper viruses. Vet Microbiol. 1997;57:83–93.CrossRefPubMed Stettler M, Beck K, Wagner A, Vandevelde M, Zurbriggen A. Determinants of persistence in canine distemper viruses. Vet Microbiol. 1997;57:83–93.CrossRefPubMed
69.
go back to reference Wiener D, Vandevelde M, Zurbriggen A, Plattet P. Investigation of a unique short open reading frame within the 3′ untranslated region of the canine distemper virus matrix messenger RNA. Virus Res. 2010;153:234–43.CrossRefPubMed Wiener D, Vandevelde M, Zurbriggen A, Plattet P. Investigation of a unique short open reading frame within the 3′ untranslated region of the canine distemper virus matrix messenger RNA. Virus Res. 2010;153:234–43.CrossRefPubMed
70.
go back to reference Dietzel E, Anderson DE, Castan A, von Messling V, Maisner A. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence. J Virol. 2011;85:7162–8.CrossRefPubMedPubMedCentral Dietzel E, Anderson DE, Castan A, von Messling V, Maisner A. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence. J Virol. 2011;85:7162–8.CrossRefPubMedPubMedCentral
71.
go back to reference El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses. 2014;6:3019–54.CrossRefPubMedPubMedCentral El Najjar F, Schmitt AP, Dutch RE. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses. 2014;6:3019–54.CrossRefPubMedPubMedCentral
72.
go back to reference Salditt A, Koethe S, Pohl C, Harms H, Kolesnikova L, Becker S, Schneider-Schaulies S. Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. J Gen Virol. 2010;91:1464–72.CrossRefPubMed Salditt A, Koethe S, Pohl C, Harms H, Kolesnikova L, Becker S, Schneider-Schaulies S. Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. J Gen Virol. 2010;91:1464–72.CrossRefPubMed
73.
74.
go back to reference Sawatsky B, Bente DA, Czub M, von Messling V. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. J Gen Virol. 2016;97:1066–76.CrossRefPubMed Sawatsky B, Bente DA, Czub M, von Messling V. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. J Gen Virol. 2016;97:1066–76.CrossRefPubMed
75.
go back to reference Noyce RS, Delpeut S, Richardson CD. Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology. 2013;436:210–20.CrossRefPubMed Noyce RS, Delpeut S, Richardson CD. Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology. 2013;436:210–20.CrossRefPubMed
76.
go back to reference Ono N, Tatsuo H, Tanaka K, Minagawa H, Yanagi Y. V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol. 2001;75:1594–600.CrossRefPubMedPubMedCentral Ono N, Tatsuo H, Tanaka K, Minagawa H, Yanagi Y. V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol. 2001;75:1594–600.CrossRefPubMedPubMedCentral
77.
go back to reference De Witte L, De Vries RD, Van Der Vlist M, Yüksel S, Litjens M, De Swart RL, Geijtenbeek TB. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog. 2008;4:e1000049.CrossRefPubMedPubMedCentral De Witte L, De Vries RD, Van Der Vlist M, Yüksel S, Litjens M, De Swart RL, Geijtenbeek TB. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog. 2008;4:e1000049.CrossRefPubMedPubMedCentral
78.
go back to reference Leonard VH, Sinn PL, Hodge G, Miest T, Devaux P, Oezguen N, Braun W, McCray PB, McChesney MB, Cattaneo R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest. 2008;118:2448–58.PubMedPubMedCentral Leonard VH, Sinn PL, Hodge G, Miest T, Devaux P, Oezguen N, Braun W, McCray PB, McChesney MB, Cattaneo R. Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest. 2008;118:2448–58.PubMedPubMedCentral
79.
go back to reference Delpeut S, Sawatsky B, Wong X-X, Frenzke M, Cattaneo R, Von Messling V: Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, Squirrel Monkeys (Simia sciureus). J Virol 2017:JVI. 02490–02416. Delpeut S, Sawatsky B, Wong X-X, Frenzke M, Cattaneo R, Von Messling V: Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, Squirrel Monkeys (Simia sciureus). J Virol 2017:JVI. 02490–02416.
80.
go back to reference Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 2012;20:429–39.CrossRefPubMed Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 2012;20:429–39.CrossRefPubMed
81.
go back to reference Haines DM, Martin KM, Chelack BJ, Sargent RA, Outerbridge CA, Clark EG. Immunohistochemical detection of canine distemper virus in haired skin, nasal mucosa, and footpad epithelium: a method for antemortem diagnosis of infection. J Vet Diagn Investig. 1999;11:396–9.CrossRef Haines DM, Martin KM, Chelack BJ, Sargent RA, Outerbridge CA, Clark EG. Immunohistochemical detection of canine distemper virus in haired skin, nasal mucosa, and footpad epithelium: a method for antemortem diagnosis of infection. J Vet Diagn Investig. 1999;11:396–9.CrossRef
82.
go back to reference Sawatsky B, Wong X-X, Hinkelmann S, Cattaneo R, Von Messling V. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol. 2012:JVI. 06414–1. Sawatsky B, Wong X-X, Hinkelmann S, Cattaneo R, Von Messling V. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol. 2012:JVI. 06414–1.
83.
go back to reference Takenaka A, Sato H, Ikeda F, Yoneda M, Kai C. Infectious progression of canine distemper virus from circulating cerebrospinal fluid into the central nervous system. J Virol. 2016;90:9285–92.CrossRefPubMedPubMedCentral Takenaka A, Sato H, Ikeda F, Yoneda M, Kai C. Infectious progression of canine distemper virus from circulating cerebrospinal fluid into the central nervous system. J Virol. 2016;90:9285–92.CrossRefPubMedPubMedCentral
84.
go back to reference Delpeut S, Noyce RS, Siu RW, Richardson CD. Host factors and measles virus replication. Curr Opin Virol. 2012;2:773–83.CrossRefPubMed Delpeut S, Noyce RS, Siu RW, Richardson CD. Host factors and measles virus replication. Curr Opin Virol. 2012;2:773–83.CrossRefPubMed
85.
go back to reference Pratakpiriya W, Ping Teh AP, Radtanakatikanon A, Pirarat N, Thi Lan N, Takeda M, Techangamsuwan S, Yamaguchi R. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Sci Rep. 2017;7:349.CrossRefPubMedPubMedCentral Pratakpiriya W, Ping Teh AP, Radtanakatikanon A, Pirarat N, Thi Lan N, Takeda M, Techangamsuwan S, Yamaguchi R. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Sci Rep. 2017;7:349.CrossRefPubMedPubMedCentral
86.
go back to reference Ludlow M, Rennick LJ, Nambulli S, de Swart RL, Duprex WP. Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Curr Opin Virol. 2014;4:15–23.CrossRefPubMed Ludlow M, Rennick LJ, Nambulli S, de Swart RL, Duprex WP. Using the ferret model to study morbillivirus entry, spread, transmission and cross-species infection. Curr Opin Virol. 2014;4:15–23.CrossRefPubMed
87.
go back to reference Di Guardo G, Giacominelli-Stuffler R, Mazzariol S. Commentary: SLAM-and Nectin-4-independent Noncytolytic spread of canine distemper virus in astrocytes. Front Microbiol. 2016;7:2011.PubMedPubMedCentral Di Guardo G, Giacominelli-Stuffler R, Mazzariol S. Commentary: SLAM-and Nectin-4-independent Noncytolytic spread of canine distemper virus in astrocytes. Front Microbiol. 2016;7:2011.PubMedPubMedCentral
88.
go back to reference Wyss-Fluehmann G, Zurbriggen A, Vandevelde M, Plattet P. Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein. Acta Neuropathol. 2010;119:617–30.CrossRefPubMedPubMedCentral Wyss-Fluehmann G, Zurbriggen A, Vandevelde M, Plattet P. Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein. Acta Neuropathol. 2010;119:617–30.CrossRefPubMedPubMedCentral
89.
go back to reference Rothlisberger A, Wiener D, Schweizer M, Peterhans E, Zurbriggen A, Plattet P. Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import. J Virol. 2010;84:6328–43.CrossRefPubMedPubMedCentral Rothlisberger A, Wiener D, Schweizer M, Peterhans E, Zurbriggen A, Plattet P. Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import. J Virol. 2010;84:6328–43.CrossRefPubMedPubMedCentral
90.
go back to reference Svitek N, Gerhauser I, Goncalves C, Grabski E, Döring M, Kalinke U, Anderson DE, Cattaneo R, Von Messling V. Morbillivirus control of the interferon response: relevance of STAT2 and mda5 but not STAT1 for canine distemper virus virulence in ferrets. J Virol. 2013:JVI. 03076–13. Svitek N, Gerhauser I, Goncalves C, Grabski E, Döring M, Kalinke U, Anderson DE, Cattaneo R, Von Messling V. Morbillivirus control of the interferon response: relevance of STAT2 and mda5 but not STAT1 for canine distemper virus virulence in ferrets. J Virol. 2013:JVI. 03076–13.
91.
go back to reference Massé N, Ainouze M, Néel B, Wild TF, Buckland R, Langedijk JP. Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol. 2004;78:9051–63.CrossRefPubMedPubMedCentral Massé N, Ainouze M, Néel B, Wild TF, Buckland R, Langedijk JP. Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol. 2004;78:9051–63.CrossRefPubMedPubMedCentral
92.
go back to reference Lee JK, Prussia A, Paal T, White LK, Snyder JP, Plemper RK. Functional interaction between paramyxovirus fusion and attachment proteins. J Biol Chem. 2008;283:16561–72.CrossRefPubMedPubMedCentral Lee JK, Prussia A, Paal T, White LK, Snyder JP, Plemper RK. Functional interaction between paramyxovirus fusion and attachment proteins. J Biol Chem. 2008;283:16561–72.CrossRefPubMedPubMedCentral
93.
go back to reference Martella V, Cirone F, Elia G, Lorusso E, Decaro N, Campolo M, Desario C, Lucente M, Bellacicco A, Blixenkrone-Møller M. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy. Vet Microbiol. 2006;116:301–9.CrossRefPubMed Martella V, Cirone F, Elia G, Lorusso E, Decaro N, Campolo M, Desario C, Lucente M, Bellacicco A, Blixenkrone-Møller M. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy. Vet Microbiol. 2006;116:301–9.CrossRefPubMed
94.
go back to reference Langedijk JP, Janda J, Origgi FC, Örvell C, Vandevelde M, Zurbriggen A, Plattet P. Canine distemper virus infects canine keratinocytes and immune cells using overlapping and distinct regions located on one side of the attachment protein. J Virol. 2011:JVI. 05340–11. Langedijk JP, Janda J, Origgi FC, Örvell C, Vandevelde M, Zurbriggen A, Plattet P. Canine distemper virus infects canine keratinocytes and immune cells using overlapping and distinct regions located on one side of the attachment protein. J Virol. 2011:JVI. 05340–11.
95.
go back to reference Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol. 2011;18:135–41.CrossRefPubMed Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, Yanagi Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol. 2011;18:135–41.CrossRefPubMed
96.
go back to reference Zhang X, Lu G, Qi J, Li Y, He Y, Xu X, Shi J, Zhang CW, Yan J, Gao GF. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol. 2013;20:67–72.CrossRefPubMed Zhang X, Lu G, Qi J, Li Y, He Y, Xu X, Shi J, Zhang CW, Yan J, Gao GF. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat Struct Mol Biol. 2013;20:67–72.CrossRefPubMed
97.
go back to reference Noyce RS, Bondre DG, Ha MN, Lin L-T, Sisson G, Tsao M-S, Richardson CD. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011;7:e1002240.CrossRefPubMedPubMedCentral Noyce RS, Bondre DG, Ha MN, Lin L-T, Sisson G, Tsao M-S, Richardson CD. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011;7:e1002240.CrossRefPubMedPubMedCentral
98.
go back to reference Otsuki N, Sekizuka T, Seki F, Sakai K, Kubota T, Nakatsu Y, Chen S, Fukuhara H, Maenaka K, Yamaguchi R. Canine distemper virus with the intact C protein has the potential to replicate in human epithelial cells by using human nectin4 as a receptor. Virology. 2013;435:485–92.CrossRefPubMed Otsuki N, Sekizuka T, Seki F, Sakai K, Kubota T, Nakatsu Y, Chen S, Fukuhara H, Maenaka K, Yamaguchi R. Canine distemper virus with the intact C protein has the potential to replicate in human epithelial cells by using human nectin4 as a receptor. Virology. 2013;435:485–92.CrossRefPubMed
99.
go back to reference Sakai K, Nagata N, Ami Y, Seki F, Suzaki Y, Iwata-Yoshikawa N, Suzuki T, Fukushi S, Mizutani T, Yoshikawa T, et al. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008. J Virol. 2013;87:1105–14.CrossRefPubMedPubMedCentral Sakai K, Nagata N, Ami Y, Seki F, Suzaki Y, Iwata-Yoshikawa N, Suzuki T, Fukushi S, Mizutani T, Yoshikawa T, et al. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008. J Virol. 2013;87:1105–14.CrossRefPubMedPubMedCentral
100.
go back to reference de Vries RD, Ludlow M, Verburgh RJ, van Amerongen G, Yuksel S, Nguyen DT, McQuaid S, Osterhaus AD, Duprex WP, de Swart RL. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J Virol. 2014;88:4423–33.CrossRefPubMedPubMedCentral de Vries RD, Ludlow M, Verburgh RJ, van Amerongen G, Yuksel S, Nguyen DT, McQuaid S, Osterhaus AD, Duprex WP, de Swart RL. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J Virol. 2014;88:4423–33.CrossRefPubMedPubMedCentral
101.
go back to reference Feng N, Liu Y, Wang J, Xu W, Li T, Wang T, Wang L, Yu Y, Wang H, Zhao Y. Canine distemper virus isolated from a monkey efficiently replicates on Vero cells expressing non-human primate SLAM receptors but not human SLAM receptor. BMC Vet Res. 2016;12:160.CrossRefPubMedPubMedCentral Feng N, Liu Y, Wang J, Xu W, Li T, Wang T, Wang L, Yu Y, Wang H, Zhao Y. Canine distemper virus isolated from a monkey efficiently replicates on Vero cells expressing non-human primate SLAM receptors but not human SLAM receptor. BMC Vet Res. 2016;12:160.CrossRefPubMedPubMedCentral
102.
go back to reference Appel MJ, Shek WR, Shesberadaran H, Norrby E. Measles virus and inactivated canine distemper virus induce incomplete immunity to canine distemper. Arch Virol. 1984;82:73–82.CrossRefPubMed Appel MJ, Shek WR, Shesberadaran H, Norrby E. Measles virus and inactivated canine distemper virus induce incomplete immunity to canine distemper. Arch Virol. 1984;82:73–82.CrossRefPubMed
103.
go back to reference Chalmers WS, Baxendale W. A comparison of canine distemper vaccine and measles vaccine for the prevention of canine distemper in young puppies. Vet Rec. 1994;135:349–53.CrossRefPubMed Chalmers WS, Baxendale W. A comparison of canine distemper vaccine and measles vaccine for the prevention of canine distemper in young puppies. Vet Rec. 1994;135:349–53.CrossRefPubMed
Metadata
Title
Tropism and molecular pathogenesis of canine distemper virus
Authors
Santiago Rendon-Marin
Renata da Fontoura Budaszewski
Cláudio Wageck Canal
Julian Ruiz-Saenz
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1136-6

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.