Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2008

01-09-2008 | Preclinical Study

Trichostatin A and 5 Aza-2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR

Authors: Peter Pryzbylkowski, Oluwakemi Obajimi, Judith Clancy Keen

Published in: Breast Cancer Research and Treatment | Issue 1/2008

Login to get access

Abstract

Trichostatin A (TSA) and 5-Aza 2′deoxycytidine (AZA), two well characterized pharmacologic inhibitors of histone deacetylation and DNA methylation, affect estrogen receptor alpha (ER) levels differently in ER-positive versus ER-negative breast cancer cell lines. Whereas pharmacologic inhibition of these epigenetic mechanisms results in re-expression and increased estrogen receptor alpha (ER) levels in ER-negative cells, treatment in ER-positive MCF7 cells results in decreased ER mRNA and protein levels. This decrease is dependent upon protein interaction with the ER 3′UTR. Actinomycin D studies showed a 37.5% reduction in ER mRNA stability from 4 to 1.5 h in AZA/TSA treated MCF7 cell lines; an effect not seen in 231ER + cells transfected with the ER coding region but lacking incorporation of the 3′UTR. AZA/TSA do not appear to directly interact with the 3′UTR but rather decrease stability through altered subcellular localization of the RNA binding protein, HuR. siRNA inhibition of HuR expression reduces both the steady-state and stability of ER mRNA, suggesting that HuR plays a critical role in the control of ER mRNA stability. Our data suggest that epigenetic modulators can alter stability through modulation of HuR subcellular distribution. Taken together, these data provide a novel anti-estrogenic mechanism for AZA and TSA in ER positive human breast cancer cells.
Literature
1.
go back to reference Osborne CK, Fuqua SAW (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186PubMed Osborne CK, Fuqua SAW (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186PubMed
2.
go back to reference Jordan VC, Brodie AM H (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72:7–25PubMedCrossRef Jordan VC, Brodie AM H (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72:7–25PubMedCrossRef
4.
go back to reference Osborne CK, Zhao HH, Fuqua SA (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186PubMed Osborne CK, Zhao HH, Fuqua SA (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186PubMed
5.
go back to reference Schiff R, Massarweh SA, Shou J et al (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336SPubMedCrossRef Schiff R, Massarweh SA, Shou J et al (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336SPubMedCrossRef
6.
go back to reference Encarnacion C, Ciocca D, McGuire W et al (1993) Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26:237–246PubMedCrossRef Encarnacion C, Ciocca D, McGuire W et al (1993) Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26:237–246PubMedCrossRef
7.
go back to reference Wang LH, Yang XY, Zhang X et al (2006) Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell 10:487–499PubMedCrossRef Wang LH, Yang XY, Zhang X et al (2006) Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer. Cancer Cell 10:487–499PubMedCrossRef
8.
go back to reference Ferguson AT, Lapidus R, Baylin S et al (1995) Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 55:2279–2283PubMed Ferguson AT, Lapidus R, Baylin S et al (1995) Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res 55:2279–2283PubMed
9.
go back to reference Ferguson AT, Vertino P, Spitzner J et al (1997) Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 272:32260–32266PubMedCrossRef Ferguson AT, Vertino P, Spitzner J et al (1997) Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-aza-2′-deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem 272:32260–32266PubMedCrossRef
10.
go back to reference Jang E, Lim S-J, Lee E et al (2004) The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor a-negative breast cancer cells to tamoxifen. Oncogene 23:1724–1736PubMedCrossRef Jang E, Lim S-J, Lee E et al (2004) The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor a-negative breast cancer cells to tamoxifen. Oncogene 23:1724–1736PubMedCrossRef
11.
go back to reference Keen JC, Yan L, Mack KM et al (2003) A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat 81:177–186PubMedCrossRef Keen JC, Yan L, Mack KM et al (2003) A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat 81:177–186PubMedCrossRef
12.
go back to reference Nass SJ, Herman JG, Gabrielson E et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348PubMed Nass SJ, Herman JG, Gabrielson E et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348PubMed
13.
go back to reference Ottaviano Y, Issa J, Parl F et al (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555PubMed Ottaviano Y, Issa J, Parl F et al (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555PubMed
14.
go back to reference Sharma D, Saxena NK, Davidson NE et al (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66:6370–6378PubMedCrossRef Sharma D, Saxena NK, Davidson NE et al (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66:6370–6378PubMedCrossRef
15.
go back to reference Yang X, Ferguson AT, Nass SJ et al (2000) Transcriptional activation of estrogen receptor ∝ in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894PubMed Yang X, Ferguson AT, Nass SJ et al (2000) Transcriptional activation of estrogen receptor ∝ in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894PubMed
16.
go back to reference Yang X, Phillips DL, Ferguson AT et al (2001) Synergistic activation of functional estrogen receptor (ER)-∝ by DNA methyltransferase and histone deacetylase inhibition in human ER-∝-negative breast cancer cells. Cancer Res 61:7025–7029PubMed Yang X, Phillips DL, Ferguson AT et al (2001) Synergistic activation of functional estrogen receptor (ER)-∝ by DNA methyltransferase and histone deacetylase inhibition in human ER-∝-negative breast cancer cells. Cancer Res 61:7025–7029PubMed
17.
go back to reference Alao JP, Lam EW-F, Ali S et al (2004) Histone deacetylase inhibitor trichostatin A represses estrogen receptor {alpha}-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10:8094–8104PubMedCrossRef Alao JP, Lam EW-F, Ali S et al (2004) Histone deacetylase inhibitor trichostatin A represses estrogen receptor {alpha}-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin Cancer Res 10:8094–8104PubMedCrossRef
18.
go back to reference Keen JC, Zhou Q, Park BH et al (2005) Protein phosphatase 2A regulates estrogen receptor {alpha} (ER) expression through modulation of ER mRNA stability. J Biol Chem 280:29519–29524PubMedCrossRef Keen JC, Zhou Q, Park BH et al (2005) Protein phosphatase 2A regulates estrogen receptor {alpha} (ER) expression through modulation of ER mRNA stability. J Biol Chem 280:29519–29524PubMedCrossRef
19.
go back to reference Kenealy MR, Flouriot G, Pope C et al (1996) The 3′untranslated region of the human estrogen receptor gene post-transcriptionally reduces mRNA levels. Biochem Soc Trans 24:107SPubMed Kenealy MR, Flouriot G, Pope C et al (1996) The 3′untranslated region of the human estrogen receptor gene post-transcriptionally reduces mRNA levels. Biochem Soc Trans 24:107SPubMed
20.
go back to reference Kenealy M-R, Flouriot G, Sonntag-Buck V et al (2000) The 3′-untranslated region of the human estrogen receptor {alpha} gene mediates rapid messenger ribonucleic acid turnover. Endocrinology 141:2805–2813PubMedCrossRef Kenealy M-R, Flouriot G, Sonntag-Buck V et al (2000) The 3′-untranslated region of the human estrogen receptor {alpha} gene mediates rapid messenger ribonucleic acid turnover. Endocrinology 141:2805–2813PubMedCrossRef
21.
go back to reference Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci (CMLS) 58:266–277CrossRef Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci (CMLS) 58:266–277CrossRef
22.
go back to reference Fan X, Steitz J (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. Embo J 17:3448–3460PubMedCrossRef Fan X, Steitz J (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. Embo J 17:3448–3460PubMedCrossRef
23.
go back to reference Giles KM, Daly JM, Beveridge DJ et al (2003) The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem 278:2937–2946PubMedCrossRef Giles KM, Daly JM, Beveridge DJ et al (2003) The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem 278:2937–2946PubMedCrossRef
24.
go back to reference Guo X, Hartley RS (2006) HuR Contributes to Cyclin E1 Deregulation in MCF-7 Breast Cancer Cells. Cancer Res 66:7948–7956PubMedCrossRef Guo X, Hartley RS (2006) HuR Contributes to Cyclin E1 Deregulation in MCF-7 Breast Cancer Cells. Cancer Res 66:7948–7956PubMedCrossRef
25.
go back to reference Sommer S, Cui Y, Brewer G et al (2005) The c-Yes 3′-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol 97:219–229PubMedCrossRef Sommer S, Cui Y, Brewer G et al (2005) The c-Yes 3′-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol 97:219–229PubMedCrossRef
26.
go back to reference Keen JC, Pettit C, Mack K, et al (2004) Protein phosphatase 2A (PP2A) regulates estrogen receptor alpha (ER) through interaction with the ER promoter. Proc Am Assoc Cancer Res 45: 2399 Keen JC, Pettit C, Mack K, et al (2004) Protein phosphatase 2A (PP2A) regulates estrogen receptor alpha (ER) through interaction with the ER promoter. Proc Am Assoc Cancer Res 45: 2399
27.
go back to reference Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26:191–198PubMedCrossRef Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26:191–198PubMedCrossRef
28.
go back to reference Margueron R, Duong V, Bonnet S et al (2004) Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. J Mol Endocrinol 32:583–594PubMedCrossRef Margueron R, Duong V, Bonnet S et al (2004) Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. J Mol Endocrinol 32:583–594PubMedCrossRef
29.
go back to reference Huang Y, Keen JC, Pledgie A et al (2006) Polyamine analogues down-regulate estrogen receptor {alpha} expression in human breast cancer cells. J Biol Chem 281:19055–19063PubMedCrossRef Huang Y, Keen JC, Pledgie A et al (2006) Polyamine analogues down-regulate estrogen receptor {alpha} expression in human breast cancer cells. J Biol Chem 281:19055–19063PubMedCrossRef
30.
go back to reference Denkert C, Weichert W, Winzer K-J, Muller B-M, Noske A, Niesporek S, Kristiansen G, Guski H, Dietel M, Hauptmann S (2004) Expression of the ELAV-Like Protein HuR Is Associated with Higher Tumor Grade and Increased Cyclooxygenase-2 Expression in Human Breast Carcinoma. Clin Cancer Res 10:5580–5586PubMedCrossRef Denkert C, Weichert W, Winzer K-J, Muller B-M, Noske A, Niesporek S, Kristiansen G, Guski H, Dietel M, Hauptmann S (2004) Expression of the ELAV-Like Protein HuR Is Associated with Higher Tumor Grade and Increased Cyclooxygenase-2 Expression in Human Breast Carcinoma. Clin Cancer Res 10:5580–5586PubMedCrossRef
31.
go back to reference Heinonen Heinonen M, Bono P, Narko K et al (2005) Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 65:2157–2161CrossRef Heinonen Heinonen M, Bono P, Narko K et al (2005) Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 65:2157–2161CrossRef
32.
go back to reference Sharma D, Blum J, Yang X, Beaulieu N, Macleod A, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the estrogen receptor alpha promoter upon reactivation in ER negative human breast cancer cells. Mol Endocrinol 19:1740–1751PubMedCrossRef Sharma D, Blum J, Yang X, Beaulieu N, Macleod A, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the estrogen receptor alpha promoter upon reactivation in ER negative human breast cancer cells. Mol Endocrinol 19:1740–1751PubMedCrossRef
Metadata
Title
Trichostatin A and 5 Aza-2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR
Authors
Peter Pryzbylkowski
Oluwakemi Obajimi
Judith Clancy Keen
Publication date
01-09-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9751-0

Other articles of this Issue 1/2008

Breast Cancer Research and Treatment 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine