Skip to main content
Top
Published in: Molecular Pain 1/2009

Open Access 01-12-2009 | Research

Transforming growth factor-β1 impairs neuropathic pain through pleiotropic effects

Authors: Stefania Echeverry, Xiang Qun Shi, Alexandra Haw, Hong Liu, Zhong-wei Zhang, Ji Zhang

Published in: Molecular Pain | Issue 1/2009

Login to get access

Abstract

Background

Understanding the underlying mechanisms of neuropathic pain caused by damage to the peripheral nervous system remains challenging and could lead to significantly improved therapies. Disturbance of homeostasis not only occurs at the site of injury but also extends to the spinal cord and brain involving various types of cells. Emerging data implicate neuroimmune interaction in the initiation and maintenance of chronic pain hypersensitivity.

Results

In this study, we sought to investigate the effects of TGF-β1, a potent anti-inflammatory cytokine, in alleviating nerve injury-induced neuropathic pain in rats. By using a well established neuropathic pain animal model (partial ligation of the sciatic nerve), we demonstrated that intrathecal infusion of recombinant TGF-β1 significantly attenuated nerve injury-induced neuropathic pain. TGF-β1 treatment not only prevents development of neuropathic pain following nerve injury, but also reverses previously established neuropathic pain conditions. The biological outcomes of TGF-β1 in this context are attributed to its pleiotropic effects. It inhibits peripheral nerve injury-induced spinal microgliosis, spinal microglial and astrocytic activation, and exhibits a powerful neuroprotective effect by preventing the induction of ATF3+ neurons following nerve ligation, consequently reducing the expression of chemokine MCP-1 in damaged neurons. TGF-β1 treatment also suppresses nerve injury-induced inflammatory response in the spinal cord, as revealed by a reduction in cytokine expression.

Conclusion

Our findings revealed that TGF-β1 is effective in the treatment of neuropathic by targeting both neurons and glial cells. We suggest that therapeutic agents such as TGF-β1 having multipotent effects on different types of cells could work in synergy to regain homeostasis in local spinal cord microenvironments, therefore contributing to attenuate neuropathic pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sindrup SH, Jensen TS: Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999, 83: 389–400. 10.1016/S0304-3959(99)00154-2PubMedCrossRef Sindrup SH, Jensen TS: Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999, 83: 389–400. 10.1016/S0304-3959(99)00154-2PubMedCrossRef
2.
go back to reference Watson CP: The treatment of neuropathic pain: antidepressants and opioids. Clin J Pain 2000, 16: S49-S55.PubMedCrossRef Watson CP: The treatment of neuropathic pain: antidepressants and opioids. Clin J Pain 2000, 16: S49-S55.PubMedCrossRef
3.
go back to reference Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368. 10.1038/nn1992PubMedCrossRef Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368. 10.1038/nn1992PubMedCrossRef
4.
go back to reference Colburn RW, Rickman AJ, DeLeo JA: The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 1999, 157: 289–304. 10.1006/exnr.1999.7065PubMedCrossRef Colburn RW, Rickman AJ, DeLeo JA: The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 1999, 157: 289–304. 10.1006/exnr.1999.7065PubMedCrossRef
5.
go back to reference Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O'Donnell D: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 2003, 17: 2750–2754. 10.1046/j.1460-9568.2003.02704.xPubMedCrossRef Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O'Donnell D: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 2003, 17: 2750–2754. 10.1046/j.1460-9568.2003.02704.xPubMedCrossRef
6.
go back to reference Fu KY, Light AR, Matsushima GK, Maixner W: Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res 1999, 825: 59–67. 10.1016/S0006-8993(99)01186-5PubMedCrossRef Fu KY, Light AR, Matsushima GK, Maixner W: Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res 1999, 825: 59–67. 10.1016/S0006-8993(99)01186-5PubMedCrossRef
7.
go back to reference Echeverry S, Shi XQ, Zhang J: Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain 2008, 135: 37–47. 10.1016/j.pain.2007.05.002PubMedCrossRef Echeverry S, Shi XQ, Zhang J: Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain 2008, 135: 37–47. 10.1016/j.pain.2007.05.002PubMedCrossRef
8.
go back to reference Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 2007, 27: 12396–12406. 10.1523/JNEUROSCI.3016-07.2007PubMedCrossRef Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S: Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 2007, 27: 12396–12406. 10.1523/JNEUROSCI.3016-07.2007PubMedCrossRef
9.
go back to reference Zhang J, De Koninck Y: Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 2006, 97: 772–783. 10.1111/j.1471-4159.2006.03746.xPubMedCrossRef Zhang J, De Koninck Y: Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem 2006, 97: 772–783. 10.1111/j.1471-4159.2006.03746.xPubMedCrossRef
10.
go back to reference Nesic O, Lee J, Johnson KM, Ye Z, Xu GY, Unabia GC, Wood TG, McAdoo DJ, Westlund KN, Hulsebosch CE, Regino Perez-Polo J: Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J Neurochem 2005, 95: 998–1014. 10.1111/j.1471-4159.2005.03462.xPubMedCrossRef Nesic O, Lee J, Johnson KM, Ye Z, Xu GY, Unabia GC, Wood TG, McAdoo DJ, Westlund KN, Hulsebosch CE, Regino Perez-Polo J: Transcriptional profiling of spinal cord injury-induced central neuropathic pain. J Neurochem 2005, 95: 998–1014. 10.1111/j.1471-4159.2005.03462.xPubMedCrossRef
11.
go back to reference Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP: Molecular mechanisms of cancer pain. Nat Rev Cancer 2002, 2: 201–209. 10.1038/nrc747PubMedCrossRef Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP: Molecular mechanisms of cancer pain. Nat Rev Cancer 2002, 2: 201–209. 10.1038/nrc747PubMedCrossRef
12.
go back to reference Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368. 10.1038/nn1992PubMedCrossRef Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368. 10.1038/nn1992PubMedCrossRef
15.
go back to reference Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor beta in human disease. N Engl J Med 2000, 342: 1350–1358. 10.1056/NEJM200005043421807PubMedCrossRef Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor beta in human disease. N Engl J Med 2000, 342: 1350–1358. 10.1056/NEJM200005043421807PubMedCrossRef
16.
go back to reference Bottner M, Krieglstein K, Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000, 75: 2227–2240. 10.1046/j.1471-4159.2000.0752227.xPubMedCrossRef Bottner M, Krieglstein K, Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000, 75: 2227–2240. 10.1046/j.1471-4159.2000.0752227.xPubMedCrossRef
17.
go back to reference Dennler S, Goumans MJ, ten DP: Transforming growth factor beta signal transduction. J Leukoc Biol 2002, 71: 731–740.PubMed Dennler S, Goumans MJ, ten DP: Transforming growth factor beta signal transduction. J Leukoc Biol 2002, 71: 731–740.PubMed
18.
go back to reference Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998, 54: 71–85. 10.1016/S0301-0082(97)00066-XPubMedCrossRef Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998, 54: 71–85. 10.1016/S0301-0082(97)00066-XPubMedCrossRef
19.
go back to reference Lippa CF, Smith TW, Flanders KC: Transforming growth factor-beta: neuronal and glial expression in CNS degenerative diseases. Neurodegeneration 1995, 4: 425–432. 10.1006/neur.1995.0051PubMedCrossRef Lippa CF, Smith TW, Flanders KC: Transforming growth factor-beta: neuronal and glial expression in CNS degenerative diseases. Neurodegeneration 1995, 4: 425–432. 10.1006/neur.1995.0051PubMedCrossRef
20.
go back to reference Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K: Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998, 18: 9822–9834.PubMed Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K: Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998, 18: 9822–9834.PubMed
21.
go back to reference Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 1993, 151: 2150–2158.PubMed Suzumura A, Sawada M, Yamamoto H, Marunouchi T: Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 1993, 151: 2150–2158.PubMed
22.
go back to reference Benveniste EN, Tang LP, Law RM: Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. Int J Dev Neurosci 1995, 13: 341–349. 10.1016/0736-5748(94)00061-7PubMedCrossRef Benveniste EN, Tang LP, Law RM: Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. Int J Dev Neurosci 1995, 13: 341–349. 10.1016/0736-5748(94)00061-7PubMedCrossRef
23.
go back to reference Vodovotz Y, Geiser AG, Chesler L, Letterio JJ, Campbell A, Lucia MS, Sporn MB, Roberts AB: Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med 1996, 183: 2337–2342. 10.1084/jem.183.5.2337PubMedCrossRef Vodovotz Y, Geiser AG, Chesler L, Letterio JJ, Campbell A, Lucia MS, Sporn MB, Roberts AB: Spontaneously increased production of nitric oxide and aberrant expression of the inducible nitric oxide synthase in vivo in the transforming growth factor beta 1 null mouse. J Exp Med 1996, 183: 2337–2342. 10.1084/jem.183.5.2337PubMedCrossRef
24.
go back to reference Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43: 205–218. 10.1016/0304-3959(90)91074-SPubMedCrossRef Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43: 205–218. 10.1016/0304-3959(90)91074-SPubMedCrossRef
25.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262PubMedCrossRef Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262PubMedCrossRef
26.
go back to reference Dunker N, Schuster N, Krieglstein K: TGF-beta modulates programmed cell death in the retina of the developing chick embryo. Development 2001, 128: 1933–1942.PubMed Dunker N, Schuster N, Krieglstein K: TGF-beta modulates programmed cell death in the retina of the developing chick embryo. Development 2001, 128: 1933–1942.PubMed
27.
go back to reference Krieglstein K, Richter S, Farkas L, Schuster N, Dunker N, Oppenheim RW, Unsicker K: Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat Neurosci 2000, 3: 1085–1090. 10.1038/80598PubMedCrossRef Krieglstein K, Richter S, Farkas L, Schuster N, Dunker N, Oppenheim RW, Unsicker K: Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat Neurosci 2000, 3: 1085–1090. 10.1038/80598PubMedCrossRef
28.
go back to reference Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K: TGF-beta and the regulation of neuron survival and death. J Physiol Paris 2002, 96: 25–30. 10.1016/S0928-4257(01)00077-8PubMedCrossRef Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K: TGF-beta and the regulation of neuron survival and death. J Physiol Paris 2002, 96: 25–30. 10.1016/S0928-4257(01)00077-8PubMedCrossRef
29.
go back to reference Tesseur I, Wyss-Coray T: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 2006, 3: 505–513. 10.2174/156720506779025297PubMedCrossRef Tesseur I, Wyss-Coray T: A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 2006, 3: 505–513. 10.2174/156720506779025297PubMedCrossRef
30.
go back to reference Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T: Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest 2006, 116: 3060–3069. 10.1172/JCI27341PubMedCentralPubMedCrossRef Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T: Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest 2006, 116: 3060–3069. 10.1172/JCI27341PubMedCentralPubMedCrossRef
31.
go back to reference Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K: TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 1995, 14: 736–742.PubMedCentralPubMed Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K: TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 1995, 14: 736–742.PubMedCentralPubMed
32.
go back to reference Brionne TC, Tesseur I, Masliah E, Wyss-Coray T: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003, 40: 1133–1145. 10.1016/S0896-6273(03)00766-9PubMedCrossRef Brionne TC, Tesseur I, Masliah E, Wyss-Coray T: Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003, 40: 1133–1145. 10.1016/S0896-6273(03)00766-9PubMedCrossRef
33.
go back to reference Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 2000, 15: 170–182. 10.1006/mcne.1999.0814PubMedCrossRef Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 2000, 15: 170–182. 10.1006/mcne.1999.0814PubMedCrossRef
34.
go back to reference Kataoka K, Kanje M, Dahlin LB: Induction of activating transcription factor 3 after different sciatic nerve injuries in adult rats. Scand J Plast Reconstr Surg Hand Surg 2007, 41: 158–166. 10.1080/02844310701318288PubMedCrossRef Kataoka K, Kanje M, Dahlin LB: Induction of activating transcription factor 3 after different sciatic nerve injuries in adult rats. Scand J Plast Reconstr Surg Hand Surg 2007, 41: 158–166. 10.1080/02844310701318288PubMedCrossRef
35.
go back to reference Luo MC, Zhang DQ, Ma SW, Huang YY, Shuster SJ, Porreca F, Lai J: An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005, 1: 29. 10.1186/1744-8069-1-29PubMedCentralPubMedCrossRef Luo MC, Zhang DQ, Ma SW, Huang YY, Shuster SJ, Porreca F, Lai J: An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005, 1: 29. 10.1186/1744-8069-1-29PubMedCentralPubMedCrossRef
36.
go back to reference Xiao BG, Bai XF, Zhang GX, Link H: Transforming growth factor-beta1 induces apoptosis of rat microglia without relation to bcl-2 oncoprotein expression. Neurosci Lett 1997, 226: 71–74. 10.1016/S0304-3940(97)00234-6PubMedCrossRef Xiao BG, Bai XF, Zhang GX, Link H: Transforming growth factor-beta1 induces apoptosis of rat microglia without relation to bcl-2 oncoprotein expression. Neurosci Lett 1997, 226: 71–74. 10.1016/S0304-3940(97)00234-6PubMedCrossRef
37.
go back to reference Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret JM, Courtin F, Pomerance M, Pierre M: Effects of transforming growth factor beta 1 on astroglial cells in culture. J Neurochem 1990, 54: 1056–1061. 10.1111/j.1471-4159.1990.tb02357.xPubMedCrossRef Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret JM, Courtin F, Pomerance M, Pierre M: Effects of transforming growth factor beta 1 on astroglial cells in culture. J Neurochem 1990, 54: 1056–1061. 10.1111/j.1471-4159.1990.tb02357.xPubMedCrossRef
38.
go back to reference Morganti-Kossmann MC, Kossmann T, Brandes ME, Mergenhagen SE, Wahl SM: Autocrine and paracrine regulation of astrocyte function by transforming growth factor-beta. J Neuroimmunol 1992, 39: 163–173. 10.1016/0165-5728(92)90185-NPubMedCrossRef Morganti-Kossmann MC, Kossmann T, Brandes ME, Mergenhagen SE, Wahl SM: Autocrine and paracrine regulation of astrocyte function by transforming growth factor-beta. J Neuroimmunol 1992, 39: 163–173. 10.1016/0165-5728(92)90185-NPubMedCrossRef
39.
go back to reference Makwana M, Jones LL, Cuthill D, Heuer H, Bohatschek M, Hristova M, Friedrichsen S, Ormsby I, Bueringer D, Koppius A, Bauer K, Doetschman T, Raivich G: Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 2007, 27: 11201–11213. 10.1523/JNEUROSCI.2255-07.2007PubMedCrossRef Makwana M, Jones LL, Cuthill D, Heuer H, Bohatschek M, Hristova M, Friedrichsen S, Ormsby I, Bueringer D, Koppius A, Bauer K, Doetschman T, Raivich G: Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 2007, 27: 11201–11213. 10.1523/JNEUROSCI.2255-07.2007PubMedCrossRef
40.
go back to reference Kawasaki Y, Zhang L, Cheng JK, Ji RR: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194. 10.1523/JNEUROSCI.3338-07.2008PubMedCentralPubMedCrossRef Kawasaki Y, Zhang L, Cheng JK, Ji RR: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194. 10.1523/JNEUROSCI.3338-07.2008PubMedCentralPubMedCrossRef
41.
go back to reference Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ: Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001, 410: 471–475. 10.1038/35068566PubMedCrossRef Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ: Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001, 410: 471–475. 10.1038/35068566PubMedCrossRef
43.
go back to reference Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63. 10.1016/0165-0270(94)90144-9PubMedCrossRef Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63. 10.1016/0165-0270(94)90144-9PubMedCrossRef
44.
go back to reference Dixon WJ: Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441–462. 10.1146/annurev.pa.20.040180.002301PubMedCrossRef Dixon WJ: Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441–462. 10.1146/annurev.pa.20.040180.002301PubMedCrossRef
45.
go back to reference Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88. 10.1016/0304-3959(88)90026-7PubMedCrossRef Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32: 77–88. 10.1016/0304-3959(88)90026-7PubMedCrossRef
46.
go back to reference Yaksh TL, Rudy TA: Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976, 17: 1031–1036. 10.1016/0031-9384(76)90029-9PubMedCrossRef Yaksh TL, Rudy TA: Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976, 17: 1031–1036. 10.1016/0031-9384(76)90029-9PubMedCrossRef
47.
go back to reference Zhang J, Rivest S: Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 1999, 11: 2651–2668. 10.1046/j.1460-9568.1999.00682.xPubMedCrossRef Zhang J, Rivest S: Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 1999, 11: 2651–2668. 10.1046/j.1460-9568.1999.00682.xPubMedCrossRef
Metadata
Title
Transforming growth factor-β1 impairs neuropathic pain through pleiotropic effects
Authors
Stefania Echeverry
Xiang Qun Shi
Alexandra Haw
Hong Liu
Zhong-wei Zhang
Ji Zhang
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2009
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-16

Other articles of this Issue 1/2009

Molecular Pain 1/2009 Go to the issue