Skip to main content
Top
Published in: Immunity & Ageing 1/2017

Open Access 01-12-2017 | Research

Transcriptomic profiles of aging in naïve and memory CD4+ cells from mice

Authors: Jackson Taylor, Lindsay Reynolds, Li Hou, Kurt Lohman, Wei Cui, Stephen Kritchevsky, Charles McCall, Yongmei Liu

Published in: Immunity & Ageing | Issue 1/2017

Login to get access

Abstract

Background

CD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process. It is unclear if and how these differences are reflected at the transcriptomic level. We performed microarray profiling on RNA derived from naïve (CD44low) and memory (CD44high) CD4+ T cells derived from young (2–3 month) and old (28 month) mice, in order to better understand the mechanisms of age-related functional alterations in both subsets. We also performed follow-up bioinformatic analyses in order to determine the functional consequences of gene expression changes in both of these subsets, and identify regulatory factors potentially responsible for these changes.

Results

We found 185 and 328 genes differentially expressed (FDR ≤ 0.05) in young vs. old naïve and memory cells, respectively, with 50 genes differentially expressed in both subsets. Functional annotation analyses highlighted an increase in genes involved in apoptosis specific to aged naïve cells. Both subsets shared age-related increases in inflammatory signaling genes, along with a decrease in oxidative phosphorylation genes. Cis-regulatory analyses revealed enrichment of multiple transcription factor binding sites near genes with age-associated expression, in particular NF-κB and several forkhead box transcription factors. Enhancer associated histone modifications were enriched near genes down-regulated in naïve cells. Comparison of our results with previous mouse and human datasets indicates few overlapping genes overall, but suggest consistent up-regulation of Casp1 and Il1r2, and down-regulation of Foxp1 in both mouse and human CD4+ T cells.

Conclusions

The transcriptomes of naïve and memory CD4+ T cells are distinctly affected by the aging process. However, both subsets exhibit a common increase inflammatory genes and decrease in oxidative phosphorylation genes. NF-κB, forkhead box, and Myc transcription factors are implicated as upstream regulators of these gene expression changes in both subsets, with enhancer histone modifications potentially driving unique changes unique to naïve cells. Finally we conclude that there is little overlap in age-related gene expression changes between humans and mice; however, age-related alterations in a small subset of genes may be conserved.
Appendix
Available only for authorised users
Literature
5.
go back to reference Canonica GW, Ciprandi G, Caria M, Dirienzo W, Shums A, Norton-koger B, et al. Defect of autologous mixed lymphocyte reaction and interleukin-2 in aged individuals. Mech Ageing Dev. 1985;32:205–12.CrossRefPubMed Canonica GW, Ciprandi G, Caria M, Dirienzo W, Shums A, Norton-koger B, et al. Defect of autologous mixed lymphocyte reaction and interleukin-2 in aged individuals. Mech Ageing Dev. 1985;32:205–12.CrossRefPubMed
6.
go back to reference Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol. 1998;160:1627–37.PubMed Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol. 1998;160:1627–37.PubMed
7.
go back to reference Tsukamoto H, Clise-Dwyer K, Huston GE, Duso DK, Buck AL, Johnson LL, et al. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci U S A. 2009;106:18333–8. doi:10.1073/pnas.0910139106.CrossRefPubMedPubMedCentral Tsukamoto H, Clise-Dwyer K, Huston GE, Duso DK, Buck AL, Johnson LL, et al. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci U S A. 2009;106:18333–8. doi:10.​1073/​pnas.​0910139106.CrossRefPubMedPubMedCentral
10.
go back to reference Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.CrossRefPubMed Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.CrossRefPubMed
11.
go back to reference Weng NP, Levine BL, June CH, Hodes RJ. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A. 1995;92:11091–4.CrossRefPubMedPubMedCentral Weng NP, Levine BL, June CH, Hodes RJ. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A. 1995;92:11091–4.CrossRefPubMedPubMedCentral
16.
go back to reference Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170:895–904.CrossRefPubMed Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170:895–904.CrossRefPubMed
17.
go back to reference Mirza N, Pollock K, Hoelzinger DB, Dominguez AL, Lustgarten J. Comparative kinetic analyses of gene profiles of naïve CD4 + and CD8 + T cells from young and old animals reveal novel age-related alterations. Aging Cell. 2011;10:853–67.CrossRefPubMedPubMedCentral Mirza N, Pollock K, Hoelzinger DB, Dominguez AL, Lustgarten J. Comparative kinetic analyses of gene profiles of naïve CD4 + and CD8 + T cells from young and old animals reveal novel age-related alterations. Aging Cell. 2011;10:853–67.CrossRefPubMedPubMedCentral
19.
go back to reference Hsu HC, Scott DK, Mountz JD. Impaired apoptosis and immune senescence - Cause or effect? Immunol Rev. 2005;205:130–46.CrossRefPubMed Hsu HC, Scott DK, Mountz JD. Impaired apoptosis and immune senescence - Cause or effect? Immunol Rev. 2005;205:130–46.CrossRefPubMed
20.
go back to reference Bektas A, Zhang Y, Lehmann E, Iii WHW, Becker KG, Ferrucci L, et al. Age-associated changes in basal NF-kappaB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging. 2014;6:957–74.CrossRefPubMedPubMedCentral Bektas A, Zhang Y, Lehmann E, Iii WHW, Becker KG, Ferrucci L, et al. Age-associated changes in basal NF-kappaB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging. 2014;6:957–74.CrossRefPubMedPubMedCentral
22.
go back to reference Zhao C, Davies JD. A peripheral CD4+ T cell precursor for naive, memory, and regulatory T cells. J Exp Med. 2010;2010:207. Zhao C, Davies JD. A peripheral CD4+ T cell precursor for naive, memory, and regulatory T cells. J Exp Med. 2010;2010:207.
23.
24.
go back to reference Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R. Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol. 2002;32:1567–73.CrossRefPubMed Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R. Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol. 2002;32:1567–73.CrossRefPubMed
25.
go back to reference Imrichová H, Hulselmans G, Atak ZK, Potier D, Aerts S. I-cisTarget 2015 update: Generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 2015;43:W57–64.CrossRefPubMedPubMedCentral Imrichová H, Hulselmans G, Atak ZK, Potier D, Aerts S. I-cisTarget 2015 update: Generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 2015;43:W57–64.CrossRefPubMedPubMedCentral
26.
go back to reference Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–6.CrossRefPubMedPubMedCentral Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–6.CrossRefPubMedPubMedCentral
28.
go back to reference Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda). 2012;2:987–1002. doi:10.1534/g3.112.003202.CrossRef Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW. oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda). 2012;2:987–1002. doi:10.​1534/​g3.​112.​003202.CrossRef
29.
go back to reference Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother. 2010;59:489–510.CrossRefPubMed Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother. 2010;59:489–510.CrossRefPubMed
33.
go back to reference Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.CrossRefPubMed Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.CrossRefPubMed
34.
go back to reference Remondini D, Salvioli S, Francesconi M, Pierini M, Mazzatti DJ, Powell JR, et al. Complex patterns of gene expression in human T cells during in vivo aging. Mol Biosyst. 2010;6:1983–92. doi:10.1039/c004635c.CrossRefPubMed Remondini D, Salvioli S, Francesconi M, Pierini M, Mazzatti DJ, Powell JR, et al. Complex patterns of gene expression in human T cells during in vivo aging. Mol Biosyst. 2010;6:1983–92. doi:10.​1039/​c004635c.CrossRefPubMed
35.
go back to reference de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25:875–81.CrossRefPubMedPubMedCentral de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25:875–81.CrossRefPubMedPubMedCentral
36.
go back to reference Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008;7:83–105.CrossRefPubMed Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev. 2008;7:83–105.CrossRefPubMed
40.
go back to reference Spaulding CC, Walford RL, Effros RB. The accumulation of non-replicative, non-functional, senescent T cells with age is avoided in calorically restricted mice by an enhancement of T cell apoptosis. Mech Ageing Dev. 1997;93:25–33.CrossRefPubMed Spaulding CC, Walford RL, Effros RB. The accumulation of non-replicative, non-functional, senescent T cells with age is avoided in calorically restricted mice by an enhancement of T cell apoptosis. Mech Ageing Dev. 1997;93:25–33.CrossRefPubMed
41.
go back to reference Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM, et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10:868–78.CrossRefPubMedPubMedCentral Harries LW, Hernandez D, Henley W, Wood AR, Holly AC, Bradley-Smith RM, et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011;10:868–78.CrossRefPubMedPubMedCentral
43.
go back to reference Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160:477–88.CrossRefPubMedPubMedCentral Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160:477–88.CrossRefPubMedPubMedCentral
45.
go back to reference Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013;27:1787–99.CrossRefPubMedPubMedCentral Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013;27:1787–99.CrossRefPubMedPubMedCentral
46.
47.
48.
go back to reference Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 2002;16:2650–61.CrossRefPubMedPubMedCentral Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 2002;16:2650–61.CrossRefPubMedPubMedCentral
49.
go back to reference Shi W, Oshlack A, Smyth GK. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res. 2010;38:e204.CrossRefPubMedPubMedCentral Shi W, Oshlack A, Smyth GK. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res. 2010;38:e204.CrossRefPubMedPubMedCentral
50.
go back to reference Smyth GK. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat Appl Genet Mol Biol. 2004;3:1–26.CrossRef Smyth GK. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat Appl Genet Mol Biol. 2004;3:1–26.CrossRef
52.
go back to reference Huang DW, Lempicki RA, Sherman BT. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef Huang DW, Lempicki RA, Sherman BT. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
54.
go back to reference Janky R, Verfaillie A, Imrichová H, van de Sande B, Standaert L, Christiaens V, et al. iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Comput Biol. 2014;10:e1003731.CrossRefPubMedPubMedCentral Janky R, Verfaillie A, Imrichová H, van de Sande B, Standaert L, Christiaens V, et al. iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections. PLoS Comput Biol. 2014;10:e1003731.CrossRefPubMedPubMedCentral
55.
go back to reference Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, et al. oPOSSUM: Identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 2005;33:3154–64.CrossRefPubMedPubMedCentral Ho Sui SJ, Mortimer JR, Arenillas DJ, Brumm J, Walsh CJ, Kennedy BP, et al. oPOSSUM: Identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Res. 2005;33:3154–64.CrossRefPubMedPubMedCentral
Metadata
Title
Transcriptomic profiles of aging in naïve and memory CD4+ cells from mice
Authors
Jackson Taylor
Lindsay Reynolds
Li Hou
Kurt Lohman
Wei Cui
Stephen Kritchevsky
Charles McCall
Yongmei Liu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2017
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-017-0092-5

Other articles of this Issue 1/2017

Immunity & Ageing 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.