Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2017

Open Access 01-12-2017 | Research

Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination

Authors: Patrick Peschl, Kathrin Schanda, Bleranda Zeka, Katherine Given, Denise Böhm, Klemens Ruprecht, Albert Saiz, Andreas Lutterotti, Kevin Rostásy, Romana Höftberger, Thomas Berger, Wendy Macklin, Hans Lassmann, Monika Bradl, Jeffrey L. Bennett, Markus Reindl

Published in: Journal of Neuroinflammation | Issue 1/2017

Login to get access

Abstract

Background

Antibodies to the myelin oligodendrocyte glycoprotein (MOG) are associated with a subset of inflammatory demyelinating diseases of the central nervous system such as acute disseminated encephalomyelitis and neuromyelitis optica spectrum disorders. However, whether human MOG antibodies are pathogenic or an epiphenomenon is still not completely clear. Although MOG is highly conserved within mammals, previous findings showed that not all human MOG antibodies bind to rodent MOG. We therefore hypothesized that human MOG antibody-mediated pathology in animal models may only be evident using species-specific MOG antibodies.

Methods

We screened 80 human MOG antibody-positive samples for their reactivity to mouse and rat MOG using either a live cell-based assay or immunohistochemistry on murine, rat, and human brain tissue. Selected samples reactive to either human MOG or rodent MOG were subsequently tested for their ability to induce complement-mediated damage in murine organotypic brain slices or enhance demyelination in an experimental autoimmune encephalitis (EAE) model in Lewis rats. The MOG monoclonal antibody 8-18-C5 was used as a positive control.

Results

Overall, we found that only a subset of human MOG antibodies are reactive to mouse (48/80, 60%) or rat (14/80, 18%) MOG. Purified serum antibodies from 10 human MOG antibody-positive patients (8/10 reactive to mouse MOG, 6/10 reactive to rat MOG), 3 human MOG-negative patients, and 3 healthy controls were tested on murine organotypic brain slices. Purified IgG from one patient with high titers of anti-human, mouse, and rat MOG antibodies and robust binding to myelin tissue produced significant, complement-mediated myelin loss in organotypic brain slices, but not in the EAE model. Monoclonal 8-18-C5 MOG antibody caused complement-mediated demyelination in both the organotypic brain slice model and in EAE.

Conclusion

This study shows that a subset of human MOG antibodies can induce complement-dependent pathogenic effects in a murine ex vivo animal model. Moreover, a high titer of species-specific MOG antibodies may be critical for demyelinating effects in mouse and rat animal models. Therefore, both the reactivity and titer of human MOG antibodies must be considered for future pathogenicity studies.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Brilot F, et al. Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann Neurol. 2009;66(6):833–42.CrossRefPubMed Brilot F, et al. Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann Neurol. 2009;66(6):833–42.CrossRefPubMed
3.
go back to reference Selter RC, et al. Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases. Neurology. 2010;74(21):1711–5.CrossRefPubMed Selter RC, et al. Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases. Neurology. 2010;74(21):1711–5.CrossRefPubMed
4.
go back to reference Probstel AK, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;77(6):580–8.CrossRefPubMed Probstel AK, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;77(6):580–8.CrossRefPubMed
5.
go back to reference Lalive PH, et al. Highly reactive anti-myelin oligodendrocyte glycoprotein antibodies differentiate demyelinating diseases from viral encephalitis in children. Mult Scler. 2011;17(3):297–302.CrossRefPubMed Lalive PH, et al. Highly reactive anti-myelin oligodendrocyte glycoprotein antibodies differentiate demyelinating diseases from viral encephalitis in children. Mult Scler. 2011;17(3):297–302.CrossRefPubMed
6.
go back to reference Di Pauli F, et al. Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases. Clin Immunol. 2011;138(3):247–54.CrossRefPubMed Di Pauli F, et al. Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases. Clin Immunol. 2011;138(3):247–54.CrossRefPubMed
7.
go back to reference Kitley J, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology. 2012;79(12):1273–7.CrossRefPubMed Kitley J, et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology. 2012;79(12):1273–7.CrossRefPubMed
8.
go back to reference Rostasy K, et al. Persisting myelin oligodendrocyte glycoprotein antibodies in aquaporin-4 antibody negative pediatric neuromyelitis optica. Mult Scler. 2013;19(8):1052–9.CrossRefPubMed Rostasy K, et al. Persisting myelin oligodendrocyte glycoprotein antibodies in aquaporin-4 antibody negative pediatric neuromyelitis optica. Mult Scler. 2013;19(8):1052–9.CrossRefPubMed
10.
go back to reference Ketelslegers IA, et al. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult Scler. 2015;21(12):1513–20.CrossRefPubMed Ketelslegers IA, et al. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Mult Scler. 2015;21(12):1513–20.CrossRefPubMed
11.
12.
13.
go back to reference Jarius S, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation. 2016;13(1):279.CrossRefPubMedPubMedCentral Jarius S, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation. 2016;13(1):279.CrossRefPubMedPubMedCentral
14.
15.
go back to reference van Pelt ED, et al. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands. Eur J Neurol. 2016;23(3):580–7.CrossRefPubMed van Pelt ED, et al. Neuromyelitis optica spectrum disorders: comparison of clinical and magnetic resonance imaging characteristics of AQP4-IgG versus MOG-IgG seropositive cases in the Netherlands. Eur J Neurol. 2016;23(3):580–7.CrossRefPubMed
16.
go back to reference Fernandez-Carbonell C, et al. Clinical and MRI phenotype of children with MOG antibodies. Mult Scler. 2016;22(2):174–84.CrossRefPubMed Fernandez-Carbonell C, et al. Clinical and MRI phenotype of children with MOG antibodies. Mult Scler. 2016;22(2):174–84.CrossRefPubMed
17.
18.
go back to reference Di Pauli F, et al. Fulminant demyelinating encephalomyelitis: insights from antibody studies and neuropathology. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e175.CrossRefPubMedPubMedCentral Di Pauli F, et al. Fulminant demyelinating encephalomyelitis: insights from antibody studies and neuropathology. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e175.CrossRefPubMedPubMedCentral
19.
go back to reference Jarius S, et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a MOG-IgG-positive case. Mult Scler. 2016;22(12):1541–9. Jarius S, et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a MOG-IgG-positive case. Mult Scler. 2016;22(12):1541–9.
20.
go back to reference Körtvélyessy, P., et al., ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurol Neuroimmunol Neuroinflamm. 2017;4(3):e335. Körtvélyessy, P., et al., ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurol Neuroimmunol Neuroinflamm. 2017;4(3):e335.
21.
go back to reference Linington C, et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol. 1988;130(3):443–54.PubMedPubMedCentral Linington C, et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol. 1988;130(3):443–54.PubMedPubMedCentral
22.
go back to reference Lassmann H, et al. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathol. 1988;75(6):566–76.CrossRefPubMed Lassmann H, et al. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathol. 1988;75(6):566–76.CrossRefPubMed
23.
go back to reference Schluesener HJ, et al. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol. 1987;139(12):4016–21.PubMed Schluesener HJ, et al. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol. 1987;139(12):4016–21.PubMed
25.
go back to reference Bettelli E, et al. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest. 2006;116(9):2393–402.CrossRefPubMedPubMedCentral Bettelli E, et al. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest. 2006;116(9):2393–402.CrossRefPubMedPubMedCentral
26.
go back to reference Krishnamoorthy G, et al. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116(9):2385–92.CrossRefPubMedPubMedCentral Krishnamoorthy G, et al. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116(9):2385–92.CrossRefPubMedPubMedCentral
27.
go back to reference Pollinger B, et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. 2009;206(6):1303–16.CrossRefPubMedPubMedCentral Pollinger B, et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. 2009;206(6):1303–16.CrossRefPubMedPubMedCentral
28.
go back to reference Linington C, et al. The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain. 1989;112(Pt 4):895–911.CrossRefPubMed Linington C, et al. The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain. 1989;112(Pt 4):895–911.CrossRefPubMed
29.
go back to reference Kerlero de Rosbo N, et al. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem. 1990;55(2):583–7.CrossRefPubMed Kerlero de Rosbo N, et al. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem. 1990;55(2):583–7.CrossRefPubMed
30.
go back to reference von Budingen HC, et al. Molecular characterization of antibody specificities against myelin/oligodendrocyte glycoprotein in autoimmune demyelination. Proc Natl Acad Sci U S A. 2002;99(12):8207–12.CrossRefPubMedPubMedCentral von Budingen HC, et al. Molecular characterization of antibody specificities against myelin/oligodendrocyte glycoprotein in autoimmune demyelination. Proc Natl Acad Sci U S A. 2002;99(12):8207–12.CrossRefPubMedPubMedCentral
31.
go back to reference Piddlesden SJ, et al. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am J Pathol. 1993;143(2):555–64.PubMedPubMedCentral Piddlesden SJ, et al. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am J Pathol. 1993;143(2):555–64.PubMedPubMedCentral
32.
go back to reference Brehm U, et al. Epitope specificity of demyelinating monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein (MOG). J Neuroimmunol. 1999;97(1–2):9–15.CrossRefPubMed Brehm U, et al. Epitope specificity of demyelinating monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein (MOG). J Neuroimmunol. 1999;97(1–2):9–15.CrossRefPubMed
33.
go back to reference Marta CB, et al. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A. 2005;102(39):13992–7.CrossRefPubMedPubMedCentral Marta CB, et al. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A. 2005;102(39):13992–7.CrossRefPubMedPubMedCentral
34.
go back to reference von Budingen HC, et al. Frontline: Epitope recognition on the myelin/oligodendrocyte glycoprotein differentially influences disease phenotype and antibody effector functions in autoimmune demyelination. Eur J Immunol. 2004;34(8):2072–83.CrossRefPubMed von Budingen HC, et al. Frontline: Epitope recognition on the myelin/oligodendrocyte glycoprotein differentially influences disease phenotype and antibody effector functions in autoimmune demyelination. Eur J Immunol. 2004;34(8):2072–83.CrossRefPubMed
35.
go back to reference Dale RC, et al. Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton. Neurol Neuroimmunol Neuroinflamm. 2014;1(1):e12.CrossRefPubMedPubMedCentral Dale RC, et al. Antibodies to MOG have a demyelination phenotype and affect oligodendrocyte cytoskeleton. Neurol Neuroimmunol Neuroinflamm. 2014;1(1):e12.CrossRefPubMedPubMedCentral
36.
go back to reference Flach AC, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113(12):3323–8.CrossRefPubMedPubMedCentral Flach AC, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113(12):3323–8.CrossRefPubMedPubMedCentral
37.
go back to reference Kinzel S, et al. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. 2016;132(1):43–58.CrossRefPubMedPubMedCentral Kinzel S, et al. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. 2016;132(1):43–58.CrossRefPubMedPubMedCentral
38.
go back to reference Zhou D, et al. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A. 2006;103(50):19057–62.CrossRefPubMedPubMedCentral Zhou D, et al. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A. 2006;103(50):19057–62.CrossRefPubMedPubMedCentral
40.
go back to reference Mayer MC, et al. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. J Immunol. 2013;191(7):3594–604.CrossRefPubMed Mayer MC, et al. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. J Immunol. 2013;191(7):3594–604.CrossRefPubMed
41.
go back to reference Sepulveda M, et al. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. J Neurol. 2016;263(7):1349–60.CrossRefPubMed Sepulveda M, et al. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. J Neurol. 2016;263(7):1349–60.CrossRefPubMed
43.
go back to reference Krupp LB, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261–7.CrossRefPubMed Krupp LB, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261–7.CrossRefPubMed
44.
45.
go back to reference Waters P, et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2016;87(9):1005–15.CrossRefPubMedPubMedCentral Waters P, et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2016;87(9):1005–15.CrossRefPubMedPubMedCentral
46.
go back to reference Hoftberger R, et al. An optimized immunohistochemistry technique improves NMO-IgG detection: study comparison with cell-based assays. PLoS One. 2013;8(11):e79083.CrossRefPubMedPubMedCentral Hoftberger R, et al. An optimized immunohistochemistry technique improves NMO-IgG detection: study comparison with cell-based assays. PLoS One. 2013;8(11):e79083.CrossRefPubMedPubMedCentral
47.
go back to reference Coons AH, Leduc EH, Connolly JM. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955;102(1):49–60.CrossRefPubMedPubMedCentral Coons AH, Leduc EH, Connolly JM. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med. 1955;102(1):49–60.CrossRefPubMedPubMedCentral
48.
go back to reference Sheridan GK, Dev KK. S1P1 receptor subtype inhibits demyelination and regulates chemokine release in cerebellar slice cultures. Glia. 2012;60(3):382–92.CrossRefPubMed Sheridan GK, Dev KK. S1P1 receptor subtype inhibits demyelination and regulates chemokine release in cerebellar slice cultures. Glia. 2012;60(3):382–92.CrossRefPubMed
49.
go back to reference Blauth K, et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. 2015;130(6):765–81.CrossRefPubMedPubMedCentral Blauth K, et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathol. 2015;130(6):765–81.CrossRefPubMedPubMedCentral
50.
go back to reference Liu Y, et al. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol Commun. 2017;5(1):25.CrossRefPubMedPubMedCentral Liu Y, et al. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol Commun. 2017;5(1):25.CrossRefPubMedPubMedCentral
51.
go back to reference Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol. 1981;11(3):195–9.CrossRefPubMed Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol. 1981;11(3):195–9.CrossRefPubMed
53.
go back to reference Rivas JR, et al. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol. 2017;133(1):43–60.CrossRefPubMed Rivas JR, et al. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol. 2017;133(1):43–60.CrossRefPubMed
54.
go back to reference Mader S, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation. 2011;8:184.CrossRefPubMedPubMedCentral Mader S, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation. 2011;8:184.CrossRefPubMedPubMedCentral
55.
go back to reference Harrer MD, et al. Live imaging of remyelination after antibody-mediated demyelination in an ex-vivo model for immune mediated CNS damage. Exp Neurol. 2009;216(2):431–8.CrossRefPubMed Harrer MD, et al. Live imaging of remyelination after antibody-mediated demyelination in an ex-vivo model for immune mediated CNS damage. Exp Neurol. 2009;216(2):431–8.CrossRefPubMed
56.
go back to reference Bradl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66(5):630–43.CrossRefPubMed Bradl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66(5):630–43.CrossRefPubMed
57.
go back to reference Ratelade J, Verkman AS. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica. Mol Immunol. 2014;62(1):104–13.CrossRefPubMedPubMedCentral Ratelade J, Verkman AS. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica. Mol Immunol. 2014;62(1):104–13.CrossRefPubMedPubMedCentral
Metadata
Title
Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination
Authors
Patrick Peschl
Kathrin Schanda
Bleranda Zeka
Katherine Given
Denise Böhm
Klemens Ruprecht
Albert Saiz
Andreas Lutterotti
Kevin Rostásy
Romana Höftberger
Thomas Berger
Wendy Macklin
Hans Lassmann
Monika Bradl
Jeffrey L. Bennett
Markus Reindl
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2017
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-0984-5

Other articles of this Issue 1/2017

Journal of Neuroinflammation 1/2017 Go to the issue