Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches

Authors: Olivier J T Briët, Bernadette J Huho, John E Gimnig, Nabie Bayoh, Aklilu Seyoum, Chadwick H Sikaala, Nicodem Govella, Diadier A Diallo, Salim Abdullah, Thomas A Smith, Gerry F Killeen

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

Measurement of densities of host-seeking malaria vectors is important for estimating levels of disease transmission, for appropriately allocating interventions, and for quantifying their impact. The gold standard for estimating mosquito—human contact rates is the human landing catch (HLC), where human volunteers catch mosquitoes that land on their exposed body parts. This approach necessitates exposure to potentially infectious mosquitoes, and is very labour intensive. There are several safer and less labour-intensive methods, with Centers for Disease Control light traps (LT) placed indoors near occupied bed nets being the most widely used.

Methods

This paper presents analyses of 13 studies with paired mosquito collections of LT and HLC to evaluate these methods for their consistency in sampling indoor-feeding mosquitoes belonging to the two major taxa of malaria vectors across Africa, the Anopheles gambiae sensu lato complex and the Anopheles funestus s.l. group. Both overall and study-specific sampling efficiencies of LT compared with HLC were computed, and regression methods that allow for the substantial variations in mosquito counts made by either method were used to test whether the sampling efficacy varies with mosquito density.

Results

Generally, LT were able to collect similar numbers of mosquitoes to the HLC indoors, although the relative sampling efficacy, measured by the ratio of LT:HLC varied considerably between studies. The overall best estimate for An. gambiae s.l. was 1.06 (95% credible interval: 0.68–1.64) and for An. funestus s.l. was 1.37 (0.70–2.68). Local calibration exercises are not reproducible, since only in a few studies did LT sample proportionally to HLC, and there was no geographical pattern or consistent trend with average density in the tendency for LT to either under- or over-sample.

Conclusions

LT are a crude tool at best, but are relatively easy to deploy on a large scale. Spatial and temporal variation in mosquito densities and human malaria transmission exposure span several orders of magnitude, compared to which the inconsistencies of LT are relatively small. LT, therefore, remain an invaluable and safe alternative to HLC for measuring indoor malaria transmission exposure in Africa.
Appendix
Available only for authorised users
Literature
1.
go back to reference Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London Macdonald G (1957) The epidemiology and control of malaria. Oxford University Press, London
2.
go back to reference Beier JC, Killeen G, Githure JI (1999) Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61:109–113PubMed Beier JC, Killeen G, Githure JI (1999) Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61:109–113PubMed
3.
go back to reference WHO (1975) Manual on practical entomology in malaria. Part II: methods and techniques. World Health Organization, Geneva WHO (1975) Manual on practical entomology in malaria. Part II: methods and techniques. World Health Organization, Geneva
4.
go back to reference Service MW (1977) A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res 67:343–382CrossRef Service MW (1977) A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res 67:343–382CrossRef
5.
go back to reference Gimnig JE, Walker ED, Otieno P, Kosgei J, Olang G, Ombok M et al (2013) Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88:301–308PubMedCentralPubMedCrossRef Gimnig JE, Walker ED, Otieno P, Kosgei J, Olang G, Ombok M et al (2013) Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88:301–308PubMedCentralPubMedCrossRef
6.
go back to reference Silver JB (2008) Mosquito ecology: field sampling methods, 3rd edn. Springer, New YorkCrossRef Silver JB (2008) Mosquito ecology: field sampling methods, 3rd edn. Springer, New YorkCrossRef
7.
go back to reference Odetoyinbo JA (1969) Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bull World Health Organ 40:547–560PubMedCentralPubMed Odetoyinbo JA (1969) Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bull World Health Organ 40:547–560PubMedCentralPubMed
8.
go back to reference Lines J, Curtis CF, Wilkes TJ, Njunju EM (1991) Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light traps hung beside mosquito nets. Bull Entomol Res 81:77–84CrossRef Lines J, Curtis CF, Wilkes TJ, Njunju EM (1991) Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light traps hung beside mosquito nets. Bull Entomol Res 81:77–84CrossRef
9.
go back to reference Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma J et al (1993) Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc 9:260–263PubMed Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma J et al (1993) Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc 9:260–263PubMed
10.
go back to reference Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ (1995) Comparison of sampling anopheline mosquitoes by light-trap and human-bait collections indoors at Bagamoyo, Tanzania. Med Vet Entomol 9:249–255PubMedCrossRef Davis JR, Hall T, Chee EM, Majala A, Minjas J, Shiff CJ (1995) Comparison of sampling anopheline mosquitoes by light-trap and human-bait collections indoors at Bagamoyo, Tanzania. Med Vet Entomol 9:249–255PubMedCrossRef
11.
go back to reference Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M (1998) Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res 88:503–511CrossRef Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M (1998) Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res 88:503–511CrossRef
12.
go back to reference Mathenge EM, Killeen G, Oulo DO, Irungu LW, Ndegwa PN, Knols B (2002) Development of an exposure-free bednet trap for sampling Afrotropical malaria vectors. Med Vet Entomol 16:67–74PubMedCrossRef Mathenge EM, Killeen G, Oulo DO, Irungu LW, Ndegwa PN, Knols B (2002) Development of an exposure-free bednet trap for sampling Afrotropical malaria vectors. Med Vet Entomol 16:67–74PubMedCrossRef
13.
go back to reference Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA et al (2004) Comparative field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg 70:33–37PubMed Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA et al (2004) Comparative field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg 70:33–37PubMed
14.
go back to reference Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA et al (2005) Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya. Malar J 4:7PubMedCentralPubMedCrossRef Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA et al (2005) Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya. Malar J 4:7PubMedCentralPubMedCrossRef
15.
go back to reference Govella NJ, Chaki PP, Geissbuhler Y, Kannady K, Okumu F, Charlwood JD et al (2009) A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J 8:157PubMedCentralPubMedCrossRef Govella NJ, Chaki PP, Geissbuhler Y, Kannady K, Okumu F, Charlwood JD et al (2009) A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J 8:157PubMedCentralPubMedCrossRef
16.
go back to reference Govella NJ, Chaki PP, Mpangile JM, Killeen GF (2011) Monitoring mosquitoes in urban Dar es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors 4:40PubMedCentralPubMedCrossRef Govella NJ, Chaki PP, Mpangile JM, Killeen GF (2011) Monitoring mosquitoes in urban Dar es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors 4:40PubMedCentralPubMedCrossRef
17.
go back to reference Chaki PP, Mlacha Y, Msellemu D, Muhili A, Malishee AD, Mtema ZJ et al (2012) An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns. Malar J 11:172PubMedCentralPubMedCrossRef Chaki PP, Mlacha Y, Msellemu D, Muhili A, Malishee AD, Mtema ZJ et al (2012) An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns. Malar J 11:172PubMedCentralPubMedCrossRef
18.
go back to reference Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL et al (2013) Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South-East Zambia. Parasit Vectors 6:91PubMedCentralPubMedCrossRef Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL et al (2013) Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South-East Zambia. Parasit Vectors 6:91PubMedCentralPubMedCrossRef
19.
go back to reference Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM et al (2013) Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J 12:143PubMedCentralPubMedCrossRef Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM et al (2013) Standardizing operational vector sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collection methods in western Kenya. Malar J 12:143PubMedCentralPubMedCrossRef
20.
go back to reference Jawara M, Awolola TS, Pinder M, Jeffries D, Smallegange RC, Takken W et al (2011) Field testing of different chemical combinations as odour baits for trapping wild mosquitoes in The Gambia. PLoS One 6:e19676PubMedCentralPubMedCrossRef Jawara M, Awolola TS, Pinder M, Jeffries D, Smallegange RC, Takken W et al (2011) Field testing of different chemical combinations as odour baits for trapping wild mosquitoes in The Gambia. PLoS One 6:e19676PubMedCentralPubMedCrossRef
21.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
22.
go back to reference Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160PubMedCrossRef Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160PubMedCrossRef
23.
go back to reference Smith T (1995) Proportionality between light trap catches and biting densities of malaria vectors [letter; comment]. J Am Mosq Control Assoc 11:377–378PubMed Smith T (1995) Proportionality between light trap catches and biting densities of malaria vectors [letter; comment]. J Am Mosq Control Assoc 11:377–378PubMed
24.
go back to reference Overgaard HJ, Saebo S, Reddy MR, Reddy VP, Abaga S, Matias A et al (2012) Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea. Malar J 11:56PubMedCentralPubMedCrossRef Overgaard HJ, Saebo S, Reddy MR, Reddy VP, Abaga S, Matias A et al (2012) Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea. Malar J 11:56PubMedCentralPubMedCrossRef
25.
go back to reference Marquetti MC, Navarro A, Bisset J, Garcia FA (1992) Comparison of three catching methods for collecting anopheline mosquitoes. Mem Inst Oswaldo Cruz 87:457–458PubMedCrossRef Marquetti MC, Navarro A, Bisset J, Garcia FA (1992) Comparison of three catching methods for collecting anopheline mosquitoes. Mem Inst Oswaldo Cruz 87:457–458PubMedCrossRef
26.
go back to reference Lima JB, Rosa-Freitas MG, Rodovalho CM, Santos F, Lourenco-de-Oliveira R (2014) Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches?—A review. Mem Inst Oswaldo Cruz 109:685–705PubMedCentralPubMedCrossRef Lima JB, Rosa-Freitas MG, Rodovalho CM, Santos F, Lourenco-de-Oliveira R (2014) Is there an efficient trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe the essential parameters affecting transmission dynamics as effectively as human landing catches?—A review. Mem Inst Oswaldo Cruz 109:685–705PubMedCentralPubMedCrossRef
27.
go back to reference Hii JL, Smith T, Mai A, Ibam E, Alpers MP (2000) Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bull Entomol Res 90:211–219PubMedCrossRef Hii JL, Smith T, Mai A, Ibam E, Alpers MP (2000) Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bull Entomol Res 90:211–219PubMedCrossRef
28.
go back to reference Rubio-Palis Y (1996) Evaluation of light traps combined with carbon dioxide and 1-octen-3-ol to collect anophelines in Venezuela. J Am Mosq Control Assoc 12:91–96PubMed Rubio-Palis Y (1996) Evaluation of light traps combined with carbon dioxide and 1-octen-3-ol to collect anophelines in Venezuela. J Am Mosq Control Assoc 12:91–96PubMed
29.
go back to reference Gunasekaran K, Jambulingam P, Sadanandane C, Sahu SS, Das PK (1994) Reliability of light trap sampling for Anopheles fluviatilis, a vector of malaria. Acta Trop 58:1–11PubMedCrossRef Gunasekaran K, Jambulingam P, Sadanandane C, Sahu SS, Das PK (1994) Reliability of light trap sampling for Anopheles fluviatilis, a vector of malaria. Acta Trop 58:1–11PubMedCrossRef
30.
go back to reference Parsons RE, Dondero TJ, Cheong WH (1974) Comparison of CDC miniature light traps and human biting collections for mosquito catches during malaria vector surveys in peninsular Malaysia. Mosquito News 34:211–213 Parsons RE, Dondero TJ, Cheong WH (1974) Comparison of CDC miniature light traps and human biting collections for mosquito catches during malaria vector surveys in peninsular Malaysia. Mosquito News 34:211–213
31.
go back to reference Fornadel CM, Norris LC, Norris DE (2010) Centers for Disease Control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg 83:838–842PubMedCentralPubMedCrossRef Fornadel CM, Norris LC, Norris DE (2010) Centers for Disease Control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg 83:838–842PubMedCentralPubMedCrossRef
32.
go back to reference Mboera LE, Kihonda J, Braks MA, Knols BG (1998) Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59:595–596PubMed Mboera LE, Kihonda J, Braks MA, Knols BG (1998) Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59:595–596PubMed
33.
go back to reference Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J et al (2013) Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol 42:235–247PubMedCentralPubMedCrossRef Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J et al (2013) Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol 42:235–247PubMedCentralPubMedCrossRef
35.
go back to reference Magbity EB, Magbity EB, Lines JD, Marbiah MT, David K, Peterson E (2002) How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res 92:71–76PubMedCrossRef Magbity EB, Magbity EB, Lines JD, Marbiah MT, David K, Peterson E (2002) How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res 92:71–76PubMedCrossRef
36.
go back to reference Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E et al (2006) Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis 6:161PubMedCentralPubMedCrossRef Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E et al (2006) Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis 6:161PubMedCentralPubMedCrossRef
37.
go back to reference Okumu FO, Kotas ME, Kihonda J, Mathenge EM, Killeen GF, Moore SJ (2008) Comparative evaluation of methods used for sampling malaria vectors in the Kilombero valley, South eastern Tanzania. Open Trop Med J 1:51–55CrossRef Okumu FO, Kotas ME, Kihonda J, Mathenge EM, Killeen GF, Moore SJ (2008) Comparative evaluation of methods used for sampling malaria vectors in the Kilombero valley, South eastern Tanzania. Open Trop Med J 1:51–55CrossRef
38.
go back to reference Spiegelhalter DJ, Thomas A, Best N, Lunn D (2003) Winbugs Version 1.4. MRC-BSU, Cambridge, England Spiegelhalter DJ, Thomas A, Best N, Lunn D (2003) Winbugs Version 1.4. MRC-BSU, Cambridge, England
40.
41.
go back to reference Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ (1995) Mapping the densities of malaria vectors within a single village. Acta Trop 59:1–18PubMedCrossRef Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ (1995) Mapping the densities of malaria vectors within a single village. Acta Trop 59:1–18PubMedCrossRef
42.
go back to reference Lindsay SW, Armstrong-Schellenberg JR, Zeiler HA, Daly RJ, Salum FM, Wilkins HA (1995) Exposure of Gambian children to Anopheles gambiae malaria vectors in an irrigated rice production area. Med Vet Entomol 9:50–58PubMedCrossRef Lindsay SW, Armstrong-Schellenberg JR, Zeiler HA, Daly RJ, Salum FM, Wilkins HA (1995) Exposure of Gambian children to Anopheles gambiae malaria vectors in an irrigated rice production area. Med Vet Entomol 9:50–58PubMedCrossRef
43.
go back to reference Ribeiro JM, Seulu F, Abose T, Kidane G, Teklehaimanot A (1996) Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull World Health Organ 74:299–305PubMedCentralPubMed Ribeiro JM, Seulu F, Abose T, Kidane G, Teklehaimanot A (1996) Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull World Health Organ 74:299–305PubMedCentralPubMed
44.
go back to reference Lindsay SW, Adiamah JH, Miller JE, Pleass RJ, Armstrong JR (1993) Variation in attractiveness of human subjects to malaria mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol 30:368–373PubMedCrossRef Lindsay SW, Adiamah JH, Miller JE, Pleass RJ, Armstrong JR (1993) Variation in attractiveness of human subjects to malaria mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol 30:368–373PubMedCrossRef
45.
go back to reference Mukabana WR, Takken W, Killeen GF, Knols BG (2004) Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malar J 3:1PubMedCentralPubMedCrossRef Mukabana WR, Takken W, Killeen GF, Knols BG (2004) Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae. Malar J 3:1PubMedCentralPubMedCrossRef
46.
go back to reference Knols BG, De Jong R, Takken W (1995) Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg 89:604–606PubMedCrossRef Knols BG, De Jong R, Takken W (1995) Differential attractiveness of isolated humans to mosquitoes in Tanzania. Trans R Soc Trop Med Hyg 89:604–606PubMedCrossRef
47.
go back to reference Garrett-Jones C (1964) A method for estimating the man-biting rate. World Health Organization, Geneva, WHO/Mal/450 Garrett-Jones C (1964) A method for estimating the man-biting rate. World Health Organization, Geneva, WHO/Mal/450
48.
go back to reference Elliott R (1968) Studies on man vector contact in some malarious areas in Colombia. Bull World Health Organ 38:239–253PubMedCentralPubMed Elliott R (1968) Studies on man vector contact in some malarious areas in Colombia. Bull World Health Organ 38:239–253PubMedCentralPubMed
49.
go back to reference Killeen GF, Tami A, Kihonda J, Okumu FO, Kotas ME, Grundmann H et al (2007) Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect Dis 7:121PubMedCentralPubMedCrossRef Killeen GF, Tami A, Kihonda J, Okumu FO, Kotas ME, Grundmann H et al (2007) Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect Dis 7:121PubMedCentralPubMedCrossRef
50.
go back to reference Shen J, Botly LC, Chung SA, Gibbs AL, Sabanadzovic S, Shapiro CM (2006) Fatigue and shift work. J Sleep Res 15:1–5PubMedCrossRef Shen J, Botly LC, Chung SA, Gibbs AL, Sabanadzovic S, Shapiro CM (2006) Fatigue and shift work. J Sleep Res 15:1–5PubMedCrossRef
51.
go back to reference Boivin DB, James FO (2005) Light treatment and circadian adaptation to shift work. Ind Health 43:34–48PubMedCrossRef Boivin DB, James FO (2005) Light treatment and circadian adaptation to shift work. Ind Health 43:34–48PubMedCrossRef
52.
go back to reference Kelly-Hope LA, McKenzie FE (2009) The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8:19PubMedCentralPubMedCrossRef Kelly-Hope LA, McKenzie FE (2009) The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8:19PubMedCentralPubMedCrossRef
53.
go back to reference Bryan JH (1986) Vectors of Wuchereria bancrofti in the Sepik Provinces of Papua New Guinea. Trans R Soc Trop Med Hyg 80:123–131PubMedCrossRef Bryan JH (1986) Vectors of Wuchereria bancrofti in the Sepik Provinces of Papua New Guinea. Trans R Soc Trop Med Hyg 80:123–131PubMedCrossRef
54.
go back to reference Shiff CJ, Minjas JN, Hall T, Hunt RH, Lyimo S, Davis JR (1995) Malaria infection potential of anopheline mosquitoes sampled by light trapping indoors in coastal Tanzanian villages. Med Vet Entomol 9:256–262PubMedCrossRef Shiff CJ, Minjas JN, Hall T, Hunt RH, Lyimo S, Davis JR (1995) Malaria infection potential of anopheline mosquitoes sampled by light trapping indoors in coastal Tanzanian villages. Med Vet Entomol 9:256–262PubMedCrossRef
55.
go back to reference Maliti D, Ranson H, Magesa S, Kisinza W, Mcha J, Haji K et al (2014) Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS One 9:e110910PubMedCentralPubMedCrossRef Maliti D, Ranson H, Magesa S, Kisinza W, Mcha J, Haji K et al (2014) Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS One 9:e110910PubMedCentralPubMedCrossRef
56.
go back to reference Briet OJ (2002) A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med Vet Entomol 16:22–27PubMedCrossRef Briet OJ (2002) A simple method for calculating mosquito mortality rates, correcting for seasonal variations in recruitment. Med Vet Entomol 16:22–27PubMedCrossRef
57.
go back to reference Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438:492–495PubMedCentralPubMedCrossRef Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438:492–495PubMedCentralPubMedCrossRef
58.
59.
go back to reference Hay SI, Rogers DJ, Toomer JF, Snow R (2000) Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans R Soc Trop Med Hyg 94:113–127PubMedCentralPubMedCrossRef Hay SI, Rogers DJ, Toomer JF, Snow R (2000) Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans R Soc Trop Med Hyg 94:113–127PubMedCentralPubMedCrossRef
60.
go back to reference Sikaala CH, Chinula D, Chanda J, Hamainza B, Mwenda M, Mukali I et al (2014) A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J 13:225PubMedCentralPubMedCrossRef Sikaala CH, Chinula D, Chanda J, Hamainza B, Mwenda M, Mukali I et al (2014) A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J 13:225PubMedCentralPubMedCrossRef
61.
go back to reference Amek N, Bayoh N, Hamel M, Lindblade KA, Gimnig JE, Odhiambo F et al (2012) Spatial and temporal dynamics of malaria transmission in rural Western Kenya. Parasit Vectors 5:86PubMedCentralPubMedCrossRef Amek N, Bayoh N, Hamel M, Lindblade KA, Gimnig JE, Odhiambo F et al (2012) Spatial and temporal dynamics of malaria transmission in rural Western Kenya. Parasit Vectors 5:86PubMedCentralPubMedCrossRef
62.
go back to reference Kasasa S, Asoala V, Gosoniu L, Anto F, Adjuik M, Tindana C et al (2013) Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana. Malar J 12:63PubMedCentralPubMedCrossRef Kasasa S, Asoala V, Gosoniu L, Anto F, Adjuik M, Tindana C et al (2013) Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana. Malar J 12:63PubMedCentralPubMedCrossRef
63.
go back to reference Rumisha SF, Smith T, Abdulla S, Masanja H, Vounatsou P (2014) Modelling heterogeneity in malaria transmission using large sparse spatio-temporal entomological data. Glob Health Action 7:22682PubMed Rumisha SF, Smith T, Abdulla S, Masanja H, Vounatsou P (2014) Modelling heterogeneity in malaria transmission using large sparse spatio-temporal entomological data. Glob Health Action 7:22682PubMed
64.
go back to reference Charlwood JD, Smith T, Lyimo E, Kitua A, Masanja H, Booth M et al (1998) Incidence of Plasmodium falciparum infection in infants in relation to exposure to sporozoite-infected anophelines. Am J Trop Med Hyg 59:243–251PubMed Charlwood JD, Smith T, Lyimo E, Kitua A, Masanja H, Booth M et al (1998) Incidence of Plasmodium falciparum infection in infants in relation to exposure to sporozoite-infected anophelines. Am J Trop Med Hyg 59:243–251PubMed
65.
go back to reference McElroy PD, Beier JC, Oster CN, Beadle C, Sherwood JA, Oloo AJ et al (1994) Predicting outcome in malaria: correlation between rate of exposure to infected mosquitoes and level of Plasmodium falciparum parasitemia. Am J Trop Med Hyg 51:523–532PubMed McElroy PD, Beier JC, Oster CN, Beadle C, Sherwood JA, Oloo AJ et al (1994) Predicting outcome in malaria: correlation between rate of exposure to infected mosquitoes and level of Plasmodium falciparum parasitemia. Am J Trop Med Hyg 51:523–532PubMed
66.
go back to reference McElroy PD, Beier JC, Oster CN, Onyango FK, Oloo AJ, Lin X et al (1997) Dose- and time-dependent relations between infective Anopheles inoculation and outcomes of Plasmodium falciparum parasitemia among children in western Kenya. Am J Epidemiol 145:945–956PubMedCrossRef McElroy PD, Beier JC, Oster CN, Onyango FK, Oloo AJ, Lin X et al (1997) Dose- and time-dependent relations between infective Anopheles inoculation and outcomes of Plasmodium falciparum parasitemia among children in western Kenya. Am J Epidemiol 145:945–956PubMedCrossRef
67.
go back to reference Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux L et al (2006) Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. Am J Trop Med Hyg 75(2 Suppl):11–18PubMed Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P, Molineaux L et al (2006) Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria. Am J Trop Med Hyg 75(2 Suppl):11–18PubMed
68.
go back to reference Rumisha SF, Smith TA, Masanja H, Abdulla S, Vounatsou P (2014) Relationship between child survival and malaria transmission: an analysis of the malaria transmission intensity and mortality burden across Africa (MTIMBA) project data in Rufiji demographic surveillance system, Tanzania. Malar J 13:124PubMedCentralPubMedCrossRef Rumisha SF, Smith TA, Masanja H, Abdulla S, Vounatsou P (2014) Relationship between child survival and malaria transmission: an analysis of the malaria transmission intensity and mortality burden across Africa (MTIMBA) project data in Rufiji demographic surveillance system, Tanzania. Malar J 13:124PubMedCentralPubMedCrossRef
69.
go back to reference Lengeler C (2004) Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2:CD000363PubMed Lengeler C (2004) Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2:CD000363PubMed
70.
go back to reference Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 4:CD006657PubMed Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 4:CD006657PubMed
71.
go back to reference Ilboudo-Sanogo E, Cuzin-Ouattara N, Diallo DA, Cousens SN, Esposito F, Habluetzel A et al (2001) Insecticide-treated materials, mosquito adaptation and mass effect: entomological observations after five years of vector control in Burkina Faso. Trans R Soc Trop Med Hyg 95:353–360PubMedCrossRef Ilboudo-Sanogo E, Cuzin-Ouattara N, Diallo DA, Cousens SN, Esposito F, Habluetzel A et al (2001) Insecticide-treated materials, mosquito adaptation and mass effect: entomological observations after five years of vector control in Burkina Faso. Trans R Soc Trop Med Hyg 95:353–360PubMedCrossRef
72.
go back to reference Ye Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R (2009) Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob Health Action 2. doi:10.3402/gha.v2i0.1923 Ye Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R (2009) Local scale prediction of Plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob Health Action 2. doi:10.​3402/​gha.​v2i0.​1923
73.
go back to reference Kigadye ES, Nkwengulila G, Magesa SM, Abdulla S (2010) Diversity, spatial and temporal abundance of Anopheles gambiae complex in the Rufiji River basin, south-eastern Tanzania. Tanzan J Health Res 12:68–72PubMed Kigadye ES, Nkwengulila G, Magesa SM, Abdulla S (2010) Diversity, spatial and temporal abundance of Anopheles gambiae complex in the Rufiji River basin, south-eastern Tanzania. Tanzan J Health Res 12:68–72PubMed
74.
go back to reference Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C et al (2007) Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med 4:e229PubMedCentralPubMedCrossRef Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C et al (2007) Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med 4:e229PubMedCentralPubMedCrossRef
75.
go back to reference Spiegelhalter DJ, Best N, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J Roy Statist Soc B 64:583–640CrossRef Spiegelhalter DJ, Best N, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J Roy Statist Soc B 64:583–640CrossRef
Metadata
Title
Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches
Authors
Olivier J T Briët
Bernadette J Huho
John E Gimnig
Nabie Bayoh
Aklilu Seyoum
Chadwick H Sikaala
Nicodem Govella
Diadier A Diallo
Salim Abdullah
Thomas A Smith
Gerry F Killeen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0761-9

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue