Skip to main content
Top
Published in: Respiratory Research 1/2020

Open Access 01-12-2020 | Acute Respiratory Distress-Syndrome | Research

Fluid intake-related association between urine output and mortality in acute respiratory distress syndrome

Authors: Yanfei Shen, Guolong Cai, Shangzhong Chen, Caibao Hu, Jing Yan

Published in: Respiratory Research | Issue 1/2020

Login to get access

Abstract

Background

Acute respiratory distress syndrome (ARDS), a complex response to various insults, has a high mortality rate. As pulmonary edema resulting from increased vascular permeability is a hallmark of ARDS, management of the fluid status, including the urine output (UO) and fluid intake (FI), is essential. However, the relationships between UO, FI, and mortality in ARDS remain unclear. This retrospective study aimed to investigate the interactive associations among UO, FI, and mortality in ARDS.

Methods

This was a secondary analysis of a prospective randomized controlled trial performed at 10 centers within the ARDS Network of the National Heart, Lung, and Blood Institute research network. The total UO and FI volumes within the 24-h period preceding the trial, the UO to FI ratio (UO/FI), demographic data, biochemical measurements, and other variables from 835 patients with ARDS, 539 survivors, and 296 non-survivors, were analyzed. The associations among UO, FI, the UO/FI, and mortality were assessed using a multivariable logistic regression.

Results

In all 835 patients, an increased UO was significantly associated with decreased mortality when used as a continuous variable (odds ratio [OR]: 0.98, 95% confidence interval [CI]: 0.98–0.99, P = 0.002) and as a quartile variable (OR of Q2 to Q4: 0.69–0.46, with Q1 as reference). To explore the interaction between UO and FI, the UO/FI was calculated, and a cut-off value of 0.5 was detected for the association with mortality. For patients with a UO/FI ≤0.5, an increased UO/FI was significantly associated with decreased mortality (OR: 0.09, 95% CI: 0.03–0.253, P <  0.001); this association was not significant for patients with UO/FI ratios > 0.5 (OR: 1.04, 95% CI: 0.96–1.14, P = 0.281). A significant interaction was observed between UO and the UO/FI. The association between UO and mortality was significant in the subgroup with a UO/FI ≤0.5 (OR: 0.97, 95% CI: 0.96–0.99, P = 0.006), but not in the subgroup with a UO/FI > 0.5.

Conclusions

The association between UO and mortality was mediated by the UO/FI status, as only patients with low UO/FI ratios benefitted from a higher UO.
Appendix
Available only for authorised users
Literature
1.
go back to reference Poole J, McDowell C, Lall R, Perkins G, McAuley D, Gao F, et al. Individual patient data analysis of tidal volumes used in three large randomized control trials involving patients with acute respiratory distress syndrome. Br J Anaesth. 2017;118(4):570–5.CrossRef Poole J, McDowell C, Lall R, Perkins G, McAuley D, Gao F, et al. Individual patient data analysis of tidal volumes used in three large randomized control trials involving patients with acute respiratory distress syndrome. Br J Anaesth. 2017;118(4):570–5.CrossRef
2.
go back to reference Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, et al. Has mortality from acute respiratory distress syndrome decreased over time?: a systematic review. Am J Respir Crit Care Med. 2009;179(3):220–7.CrossRef Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, et al. Has mortality from acute respiratory distress syndrome decreased over time?: a systematic review. Am J Respir Crit Care Med. 2009;179(3):220–7.CrossRef
3.
go back to reference Sibbald WJ, Short AK, Warshawski FJ, Cunningham DG, Cheung H. Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest. 1985;87(5):585–92.CrossRef Sibbald WJ, Short AK, Warshawski FJ, Cunningham DG, Cheung H. Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest. 1985;87(5):585–92.CrossRef
4.
go back to reference Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.CrossRef Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.CrossRef
5.
go back to reference Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–9.CrossRef Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–9.CrossRef
6.
go back to reference Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128(5):3098–108.CrossRef Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128(5):3098–108.CrossRef
7.
go back to reference National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRef National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRef
8.
go back to reference Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care. 2011;1(1):13.CrossRef Legrand M, Payen D. Understanding urine output in critically ill patients. Ann Intensive Care. 2011;1(1):13.CrossRef
9.
go back to reference Zhang Z, Xu X, Ni H, Deng H. Urine output on ICU entry is associated with hospital mortality in unselected critically ill patients. J Nephrol. 2014;27(1):65–71.CrossRef Zhang Z, Xu X, Ni H, Deng H. Urine output on ICU entry is associated with hospital mortality in unselected critically ill patients. J Nephrol. 2014;27(1):65–71.CrossRef
10.
go back to reference Oh HJ, Shin DH, Lee MJ, Ko KI, Kim CH, Koo HM, et al. Urine output is associated with prognosis in patients with acute kidney injury requiring continuous renal replacement therapy. J Crit Care. 2013;28(4):379–88.CrossRef Oh HJ, Shin DH, Lee MJ, Ko KI, Kim CH, Koo HM, et al. Urine output is associated with prognosis in patients with acute kidney injury requiring continuous renal replacement therapy. J Crit Care. 2013;28(4):379–88.CrossRef
11.
go back to reference Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Acute Respiratory Distress Syndrome N, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
12.
go back to reference Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710.CrossRef Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710.CrossRef
13.
go back to reference Grissom CK, Hirshberg EL, Dickerson JB, Brown SM, Lanspa MJ, Liu KD, et al. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*. Crit Care Med. 2015;43(2):288–95.CrossRef Grissom CK, Hirshberg EL, Dickerson JB, Brown SM, Lanspa MJ, Liu KD, et al. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*. Crit Care Med. 2015;43(2):288–95.CrossRef
14.
go back to reference Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7.CrossRef Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7.CrossRef
15.
go back to reference Martin GS, Mangialardi RJ, Wheeler AP, Dupont WD, Morris JA, Bernard GR. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30(10):2175–82.CrossRef Martin GS, Mangialardi RJ, Wheeler AP, Dupont WD, Morris JA, Bernard GR. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30(10):2175–82.CrossRef
16.
go back to reference Schuster CJ, Weil MH, Besso J, Carpio M, Henning RJ. Blood volume following diuresis induced by furosemide. Am J Med. 1984;76(4):585–92.CrossRef Schuster CJ, Weil MH, Besso J, Carpio M, Henning RJ. Blood volume following diuresis induced by furosemide. Am J Med. 1984;76(4):585–92.CrossRef
17.
go back to reference Demling RH, Will JA. The effect of furosemide on the pulmonary transvascular fluid filtration rate. Crit Care Med. 1978;6(5):317–9.CrossRef Demling RH, Will JA. The effect of furosemide on the pulmonary transvascular fluid filtration rate. Crit Care Med. 1978;6(5):317–9.CrossRef
18.
go back to reference Hsiao CC, Chang CH, Fan PC, Ho HT, Jenq CC, Kao KC, et al. Prognosis of patients with acute respiratory distress syndrome on extracorporeal membrane oxygenation: the impact of urine output on mortality. Ann Thorac Surg. 2014;97(6):1939–44.CrossRef Hsiao CC, Chang CH, Fan PC, Ho HT, Jenq CC, Kao KC, et al. Prognosis of patients with acute respiratory distress syndrome on extracorporeal membrane oxygenation: the impact of urine output on mortality. Ann Thorac Surg. 2014;97(6):1939–44.CrossRef
Metadata
Title
Fluid intake-related association between urine output and mortality in acute respiratory distress syndrome
Authors
Yanfei Shen
Guolong Cai
Shangzhong Chen
Caibao Hu
Jing Yan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2020
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-1286-5

Other articles of this Issue 1/2020

Respiratory Research 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.