Skip to main content
Top
Published in: Neuroinformatics 1/2024

04-11-2023 | Research

Topological Data Analysis Captures Task-Driven fMRI Profiles in Individual Participants: A Classification Pipeline Based on Persistence

Authors: Michael J. Catanzaro, Sam Rizzo, John Kopchick, Asadur Chowdury, David R. Rosenberg, Peter Bubenik, Vaibhav A. Diwadkar

Published in: Neuroinformatics | Issue 1/2024

Login to get access

Abstract

BOLD-based fMRI is the most widely used method for studying brain function. The BOLD signal while valuable, is beset with unique vulnerabilities. The most notable of these is the modest signal to noise ratio, and the relatively low temporal and spatial resolution. However, the high dimensional complexity of the BOLD signal also presents unique opportunities for functional discovery. Topological Data Analyses (TDA), a branch of mathematics optimized to search for specific classes of structure within high dimensional data may provide particularly valuable applications. In this investigation, we acquired fMRI data in the anterior cingulate cortex (ACC) using a basic motor control paradigm. Then, for each participant and each of three task conditions, fMRI signals in the ACC were summarized using two methods: a) TDA based methods of persistent homology and persistence landscapes and b) non-TDA based methods using a standard vectorization scheme. Finally, using machine learning (with support vector classifiers), classification accuracy of TDA and non-TDA vectorized data was tested across participants. In each participant, TDA-based classification out-performed the non-TDA based counterpart, suggesting that our TDA analytic pipeline better characterized task- and condition-induced structure in fMRI data in the ACC. Our results emphasize the value of TDA in characterizing task- and condition-induced structure in regional fMRI signals. In addition to providing our analytical tools for other users to emulate, we also discuss the unique role that TDA-based methods can play in the study of individual differences in the structure of functional brain signals in the healthy and the clinical brain.
Appendix
Available only for authorised users
Literature
go back to reference Amaro, E., Jr., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220–232.CrossRefPubMed Amaro, E., Jr., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220–232.CrossRefPubMed
go back to reference Anderson, K. L., Anderson, J. S., Palande, S., & Wang, B. (2018). Topological data analysis of functional MRI connectivity in time and space domains. In G. Wu, I. Rekik, M. D. Schirmer, A. W. Chung, & B. Munsell (Eds.), Connectomics in neuroImaging (Vol. 11083, pp. 67–77). Springer International Publishing. https://doi.org/10.1007/978-3-030-00755-3_8CrossRef Anderson, K. L., Anderson, J. S., Palande, S., & Wang, B. (2018). Topological data analysis of functional MRI connectivity in time and space domains. In G. Wu, I. Rekik, M. D. Schirmer, A. W. Chung, & B. Munsell (Eds.), Connectomics in neuroImaging (Vol. 11083, pp. 67–77). Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-030-00755-3_​8CrossRef
go back to reference Asemi, A., Ramaseshan, K., Burgess, A., Diwadkar, V. A., & Bressler, S. L. (2015). Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Frontiers in Human Neuroscience, 9(309). Asemi, A., Ramaseshan, K., Burgess, A., Diwadkar, V. A., & Bressler, S. L. (2015). Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Frontiers in Human Neuroscience, 9(309).
go back to reference American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Press.CrossRef American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Press.CrossRef
go back to reference Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P., & Marsden, C. D. (1986). Motor strategies involved in the performance of sequential movements. Experimental Brain Research Experimentelle Hirnforschung, 63(3), 585–595.CrossRefPubMed Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P., & Marsden, C. D. (1986). Motor strategies involved in the performance of sequential movements. Experimental Brain Research Experimentelle Hirnforschung, 63(3), 585–595.CrossRefPubMed
go back to reference Berchicci, M., Sulpizio, V., Mento, G., Lucci, G., Civale, N., Galati, G., Pitzalis, S., Spinelli, D., & Russo, F. (2020). Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain and Cognition, 141, 105565.CrossRefPubMed Berchicci, M., Sulpizio, V., Mento, G., Lucci, G., Civale, N., Galati, G., Pitzalis, S., Spinelli, D., & Russo, F. (2020). Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain and Cognition, 141, 105565.CrossRefPubMed
go back to reference Bielczyk, N. Z., Llera, A., Buitelaar, J. K., Glennon, J. C., & Beckmann, C. F. (2017). The impact of hemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(8), 00777. https://doi.org/10.1002/brb3.777CrossRef Bielczyk, N. Z., Llera, A., Buitelaar, J. K., Glennon, J. C., & Beckmann, C. F. (2017). The impact of hemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(8), 00777. https://​doi.​org/​10.​1002/​brb3.​777CrossRef
go back to reference Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144–152. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144–152.
go back to reference Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 16(1), 77–102.MathSciNet Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 16(1), 77–102.MathSciNet
go back to reference Calhoun, V. D. (2001). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. NeuroImage, 14(5), 1080–1088.CrossRefPubMed Calhoun, V. D. (2001). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. NeuroImage, 14(5), 1080–1088.CrossRefPubMed
go back to reference Comstock, D. C., & Balasubramaniam, R. (2018). Neural responses to perturbations in visual and auditory metronomes during sensorimotor synchronization. Neuropsychologia, 117, 55–66.CrossRefPubMed Comstock, D. C., & Balasubramaniam, R. (2018). Neural responses to perturbations in visual and auditory metronomes during sensorimotor synchronization. Neuropsychologia, 117, 55–66.CrossRefPubMed
go back to reference Diwadkar, V. A., Asemi, A., Burgess, A., Chowdury, A., & Bressler, S. L. (2017). Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3). Diwadkar, V. A., Asemi, A., Burgess, A., Chowdury, A., & Bressler, S. L. (2017). Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3).
go back to reference Edelsbrunner, H., & Morozov, D. (2013). Persistent homology: Theory and practice. In R. Latała, A. Ruciński, P. Strzelecki, J. Świątkowski, D. Wrzosek, & P. Zakrzewski (Eds.), European Congress of Mathematics Kraków, 2–7 July, 2012 (pp. 31–50). European Mathematical Society Publishing House. https://doi.org/10.4171/120-1/3CrossRef Edelsbrunner, H., & Morozov, D. (2013). Persistent homology: Theory and practice. In R. Latała, A. Ruciński, P. Strzelecki, J. Świątkowski, D. Wrzosek, & P. Zakrzewski (Eds.), European Congress of Mathematics Kraków, 2–7 July, 2012 (pp. 31–50). European Mathematical Society Publishing House. https://​doi.​org/​10.​4171/​120-1/​3CrossRef
go back to reference Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz, R., & Yacoub, E. (2012). The Human Connectome Project: A data acquisition perspective. Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz, R., & Yacoub, E. (2012). The Human Connectome Project: A data acquisition perspective.
go back to reference Frankford, S. A., Nieto-Castañón, A., Tourville, J. A., & Guenther, F. H. (2021). Reliability of single-subject neural activation patterns in speech production tasks. Brain and Language, 212, 104881.CrossRefPubMed Frankford, S. A., Nieto-Castañón, A., Tourville, J. A., & Guenther, F. H. (2021). Reliability of single-subject neural activation patterns in speech production tasks. Brain and Language, 212, 104881.CrossRefPubMed
go back to reference Friston, K. J. (1995a). Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage, 2(2), 166–172.CrossRefPubMed Friston, K. J. (1995a). Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage, 2(2), 166–172.CrossRefPubMed
go back to reference Friston, K. J. (1995b). Statistical parametric maps in functional imaging: A general approach (Vol. 2). Human Brain Mapping. Friston, K. J. (1995b). Statistical parametric maps in functional imaging: A general approach (Vol. 2). Human Brain Mapping.
go back to reference Friston, K. J. (2012). Network discovery with DCM. NeuroImage, 56(3), 1202–1221.CrossRef Friston, K. J. (2012). Network discovery with DCM. NeuroImage, 56(3), 1202–1221.CrossRef
go back to reference Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping, 27(5). Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping, 27(5).
go back to reference Gonzalez, C. C., & Burke, M. R. (2018). Motor sequence learning in the brain: The long and short of it. Neuroscience, 389, 85–98.CrossRefPubMed Gonzalez, C. C., & Burke, M. R. (2018). Motor sequence learning in the brain: The long and short of it. Neuroscience, 389, 85–98.CrossRefPubMed
go back to reference Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., & Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control: Evidence from functional connectivity analyses. Human Brain Mapping, 35(6), 2741–2753. https://doi.org/10.1002/hbm.22363CrossRefPubMed Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., & Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control: Evidence from functional connectivity analyses. Human Brain Mapping, 35(6), 2741–2753. https://​doi.​org/​10.​1002/​hbm.​22363CrossRefPubMed
go back to reference James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.CrossRef James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.CrossRef
go back to reference Lam, Y. S., Li, J., Ke, Y., & Yung, W. H. (2022). Variational dimensions of cingulate cortex functional connectivity and implications in neuropsychiatric disorders. Cereb Cortex.CrossRef Lam, Y. S., Li, J., Ke, Y., & Yung, W. H. (2022). Variational dimensions of cingulate cortex functional connectivity and implications in neuropsychiatric disorders. Cereb Cortex.CrossRef
go back to reference Meram, T. D., Chowdury, A., Easter, P., Attisha, T., Kallabat, E., Hanna, G. L., Arnold, P., Rosenberg, D. R., & Diwadkar, V. A. (2021). Evoking network profiles of the dorsal anterior cingulate in youth with Obsessive-Compulsive Disorder during motor control and working memory. Journal of Psychiatric Research, 132, 72–83.CrossRefPubMed Meram, T. D., Chowdury, A., Easter, P., Attisha, T., Kallabat, E., Hanna, G. L., Arnold, P., Rosenberg, D. R., & Diwadkar, V. A. (2021). Evoking network profiles of the dorsal anterior cingulate in youth with Obsessive-Compulsive Disorder during motor control and working memory. Journal of Psychiatric Research, 132, 72–83.CrossRefPubMed
go back to reference Monosov, I. E., Haber, S. N., Leuthardt, E. C., & Jezzini, A. (2020). Anterior cingulate cortex and the control of dynamic behavior in primates. Current Biology, 30(23), 1442–1454.CrossRef Monosov, I. E., Haber, S. N., Leuthardt, E. C., & Jezzini, A. (2020). Anterior cingulate cortex and the control of dynamic behavior in primates. Current Biology, 30(23), 1442–1454.CrossRef
go back to reference Morris, A., Ravishankar, M., Pivetta, L., Chowdury, A., Falco, D., Damoiseaux, J. S., Rosenberg, D. R., Bressler, S. L., & Diwadkar, V. A. (2018). Response hand and motor set differentially modulate the connectivity of brain pathways during simple uni-manual motor behavior. Brain Topography, 31(6), 985–1000.CrossRefPubMedPubMedCentral Morris, A., Ravishankar, M., Pivetta, L., Chowdury, A., Falco, D., Damoiseaux, J. S., Rosenberg, D. R., Bressler, S. L., & Diwadkar, V. A. (2018). Response hand and motor set differentially modulate the connectivity of brain pathways during simple uni-manual motor behavior. Brain Topography, 31(6), 985–1000.CrossRefPubMedPubMedCentral
go back to reference Muzik, O., & Diwadkar, V. A. (2016). In vivo correlates of thermoregulatory defense in humans: Temporal course of sub-cortical and cortical responses assessed with fMRI. Human Brain Mapping, 37(9), 3188–3202.CrossRefPubMedPubMedCentral Muzik, O., & Diwadkar, V. A. (2016). In vivo correlates of thermoregulatory defense in humans: Temporal course of sub-cortical and cortical responses assessed with fMRI. Human Brain Mapping, 37(9), 3188–3202.CrossRefPubMedPubMedCentral
go back to reference Oliva, A., Torre, S., Taranto, P., Delvecchio, G., & Brambilla, P. (2021). Neural correlates of emotional processing in panic disorder: A mini review of functional magnetic resonance imaging studies. Journal of Affective Disorders, 282, 906–914.CrossRefPubMed Oliva, A., Torre, S., Taranto, P., Delvecchio, G., & Brambilla, P. (2021). Neural correlates of emotional processing in panic disorder: A mini review of functional magnetic resonance imaging studies. Journal of Affective Disorders, 282, 906–914.CrossRefPubMed
go back to reference Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2(6), 417–424.CrossRefPubMed Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2(6), 417–424.CrossRefPubMed
go back to reference Silverstein, B., Bressler, S., & Diwadkar, V. A. (2016). Inferring the dysconnection syndrome in schizophrenia: Interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry, 7, 132.CrossRefPubMedPubMedCentral Silverstein, B., Bressler, S., & Diwadkar, V. A. (2016). Inferring the dysconnection syndrome in schizophrenia: Interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry, 7, 132.CrossRefPubMedPubMedCentral
go back to reference Smith, A. T. (2021). Cortical visual area CSv as a cingulate motor area: A sensorimotor interface for the control of locomotion. Brain Structure and Function, 226(9), 2931–2950.CrossRefPubMed Smith, A. T. (2021). Cortical visual area CSv as a cingulate motor area: A sensorimotor interface for the control of locomotion. Brain Structure and Function, 226(9), 2931–2950.CrossRefPubMed
go back to reference Stephan, K. E., Mattout, J., David, O., & Friston, K. J. (2006). Models of functional neuroimaging data. Current Medical Imaging, 2(1), 15–34.CrossRef Stephan, K. E., Mattout, J., David, O., & Friston, K. J. (2006). Models of functional neuroimaging data. Current Medical Imaging, 2(1), 15–34.CrossRef
go back to reference Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., Yendiki, A., & Haber, S. N. (2019). A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., Yendiki, A., & Haber, S. N. (2019). A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control.
go back to reference Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMed Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMed
go back to reference Von Bertalanffy, K. (1968). General systems theory. Brazilier. Von Bertalanffy, K. (1968). General systems theory. Brazilier.
Metadata
Title
Topological Data Analysis Captures Task-Driven fMRI Profiles in Individual Participants: A Classification Pipeline Based on Persistence
Authors
Michael J. Catanzaro
Sam Rizzo
John Kopchick
Asadur Chowdury
David R. Rosenberg
Peter Bubenik
Vaibhav A. Diwadkar
Publication date
04-11-2023
Publisher
Springer US
Published in
Neuroinformatics / Issue 1/2024
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-023-09645-3

Other articles of this Issue 1/2024

Neuroinformatics 1/2024 Go to the issue