Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 1/2011

01-01-2011 | Original Article

Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells

Authors: Timothy J. Haggerty, Ian S. Dunn, Lenora B. Rose, Estelle E. Newton, Sunil Martin, James L. Riley, James T. Kurnick

Published in: Cancer Immunology, Immunotherapy | Issue 1/2011

Login to get access

Abstract

While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate upregulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+ T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interleukin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pandolfi F, Cianci R, Lolli S, Dunn IS, Newton EE, Haggerty TJ, Boyle LA, Kurnick JT (2008) Strategies to overcome obstacles to successful immunotherapy of melanoma. Int J Immunopathol Pharmacol 21:493–500PubMed Pandolfi F, Cianci R, Lolli S, Dunn IS, Newton EE, Haggerty TJ, Boyle LA, Kurnick JT (2008) Strategies to overcome obstacles to successful immunotherapy of melanoma. Int J Immunopathol Pharmacol 21:493–500PubMed
2.
go back to reference Durda PJ, Dunn IS, Rose LB, Butera D, Benson EM, Pandolfi F, Kurnick JT (2003) Induction of “Antigen silencing” in melanomas by oncostatin M: down-modulation of melanocyte antigen expression. Mol Cancer Res 1:411–419PubMed Durda PJ, Dunn IS, Rose LB, Butera D, Benson EM, Pandolfi F, Kurnick JT (2003) Induction of “Antigen silencing” in melanomas by oncostatin M: down-modulation of melanocyte antigen expression. Mol Cancer Res 1:411–419PubMed
3.
go back to reference Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729CrossRefPubMed Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729CrossRefPubMed
4.
go back to reference Levy C, Khaled M, Fisher DE (2006) Mitf: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414CrossRefPubMed Levy C, Khaled M, Fisher DE (2006) Mitf: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414CrossRefPubMed
5.
go back to reference Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2010) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23:27–40CrossRefPubMed Cheli Y, Ohanna M, Ballotti R, Bertolotto C (2010) Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23:27–40CrossRefPubMed
6.
go back to reference Kurnick JT, Ramirez-Montagut T, Boyle LA, Andrews DM, Pandolfi F, Durda PJ, Butera D, Dunn IS, Benson EM, Gobin SJ, van den Elsen PJ (2001) A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage Melan-a/Mart-1 antigen through down-modulation of its promoter. J Immunol 167:1204–1211PubMed Kurnick JT, Ramirez-Montagut T, Boyle LA, Andrews DM, Pandolfi F, Durda PJ, Butera D, Dunn IS, Benson EM, Gobin SJ, van den Elsen PJ (2001) A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage Melan-a/Mart-1 antigen through down-modulation of its promoter. J Immunol 167:1204–1211PubMed
7.
go back to reference Kono M, Dunn I, Durda P, Butera D, Rose LB, Haggerty T, Benson E, Kurnick J (2006) Role of the MAP kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4:779–792CrossRefPubMed Kono M, Dunn I, Durda P, Butera D, Rose LB, Haggerty T, Benson E, Kurnick J (2006) Role of the MAP kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4:779–792CrossRefPubMed
8.
go back to reference Dunn IS, Haggerty TJ, Kono M, Durda PJ, Butera D, Macdonald DB, Benson EM, Rose LB, Kurnick JT (2007) Enhancement of human melanoma antigen expression by IFN-β. J Immunol 179:2134–2142PubMed Dunn IS, Haggerty TJ, Kono M, Durda PJ, Butera D, Macdonald DB, Benson EM, Rose LB, Kurnick JT (2007) Enhancement of human melanoma antigen expression by IFN-β. J Immunol 179:2134–2142PubMed
9.
go back to reference Scharovsky OG, Mainetti LE, Rozados VR (2009) Metronomic chemotherapy: changing the paradigm that more is better. Curr Oncol 16:7–15CrossRefPubMed Scharovsky OG, Mainetti LE, Rozados VR (2009) Metronomic chemotherapy: changing the paradigm that more is better. Curr Oncol 16:7–15CrossRefPubMed
10.
go back to reference Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436CrossRefPubMed Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436CrossRefPubMed
11.
go back to reference Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F (2008) Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 57:1579–1587CrossRefPubMed Menard C, Martin F, Apetoh L, Bouyer F, Ghiringhelli F (2008) Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 57:1579–1587CrossRefPubMed
12.
go back to reference Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648CrossRefPubMed Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648CrossRefPubMed
13.
go back to reference Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634CrossRefPubMed Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634CrossRefPubMed
14.
go back to reference Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase II beta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802CrossRefPubMed Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (2006) A topoisomerase II beta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802CrossRefPubMed
15.
go back to reference Lotito L, Russo A, Chillemi G, Bueno S, Cavalieri D, Capranico G (2008) Global transcription regulation by DNA topoisomerase I in exponentially growing Saccharomyces cerevisiae cells: activation of telomere-proximal genes by top1 deletion. J Mol Biol 377:311–322CrossRefPubMed Lotito L, Russo A, Chillemi G, Bueno S, Cavalieri D, Capranico G (2008) Global transcription regulation by DNA topoisomerase I in exponentially growing Saccharomyces cerevisiae cells: activation of telomere-proximal genes by top1 deletion. J Mol Biol 377:311–322CrossRefPubMed
16.
go back to reference Eller MS, Ostrom K, Gilchrest BA (1996) DNA damage enhances melanogenesis. Proc Natl Acad Sci USA 93:1087–1092CrossRefPubMed Eller MS, Ostrom K, Gilchrest BA (1996) DNA damage enhances melanogenesis. Proc Natl Acad Sci USA 93:1087–1092CrossRefPubMed
17.
go back to reference Park HY, Kosmadaki M, Yaar M, Gilchrest BA (2009) Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66:1493–1506CrossRefPubMed Park HY, Kosmadaki M, Yaar M, Gilchrest BA (2009) Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66:1493–1506CrossRefPubMed
18.
go back to reference Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, Nishimura EK (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137:1088–1099CrossRefPubMed Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, Nishimura EK (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137:1088–1099CrossRefPubMed
19.
go back to reference Wilstermann AM, Osheroff N (2003) Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr Top Med Chem 3:321–338CrossRefPubMed Wilstermann AM, Osheroff N (2003) Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr Top Med Chem 3:321–338CrossRefPubMed
20.
21.
go back to reference Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res 37:738–748CrossRefPubMed Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res 37:738–748CrossRefPubMed
22.
go back to reference Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMed Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMed
23.
go back to reference Dietrich PY, Le Gal FA, Dutoit V, Pittet MJ, Trautman L, Zippelius A, Cognet I, Widmer V, Walker PR, Michielin O, Guillaume P, Connerotte T, Jotereau F, Coulie PG, Romero P, Cerottini JC, Bonneville M, Valmori D (2003) Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen. J Immunol 170:5103–5109PubMed Dietrich PY, Le Gal FA, Dutoit V, Pittet MJ, Trautman L, Zippelius A, Cognet I, Widmer V, Walker PR, Michielin O, Guillaume P, Connerotte T, Jotereau F, Coulie PG, Romero P, Cerottini JC, Bonneville M, Valmori D (2003) Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen. J Immunol 170:5103–5109PubMed
24.
go back to reference Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, Rufer N, Romero P, Morgan RA, Schumacher TN, Haanen JB (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110:3564–3572CrossRefPubMed Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II, Rufer N, Romero P, Morgan RA, Schumacher TN, Haanen JB (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110:3564–3572CrossRefPubMed
25.
go back to reference Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMed Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMed
26.
go back to reference Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, Milicic A, Mahon T, Sutton DH, Laugel B, Moysey R, Cameron BJ, Vuidepot A, Purbhoo MA, Cole DK, Phillips RE, June CH, Jakobsen BK, Sewell AK, Riley JL (2008) Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 14:1390–1395CrossRefPubMed Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, Milicic A, Mahon T, Sutton DH, Laugel B, Moysey R, Cameron BJ, Vuidepot A, Purbhoo MA, Cole DK, Phillips RE, June CH, Jakobsen BK, Sewell AK, Riley JL (2008) Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 14:1390–1395CrossRefPubMed
27.
go back to reference Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174PubMed Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174PubMed
28.
go back to reference Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188:1641–1650CrossRefPubMed Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V (1998) Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 188:1641–1650CrossRefPubMed
29.
go back to reference Cutts SM, Swift LP, Rephaeli A, Nudelman A, Phillips DR (2003) Sequence specificity of adriamycin-DNA adducts in human tumor cells. Mol Cancer Ther 2:661–670PubMed Cutts SM, Swift LP, Rephaeli A, Nudelman A, Phillips DR (2003) Sequence specificity of adriamycin-DNA adducts in human tumor cells. Mol Cancer Ther 2:661–670PubMed
30.
go back to reference Strumberg D, Nitiss JL, Dong J, Kohn KW, Pommier Y (1999) Molecular analysis of yeast and human type II topoisomerases. Enzyme-DNA and drug interactions. J Biol Chem 274:28246–28255CrossRefPubMed Strumberg D, Nitiss JL, Dong J, Kohn KW, Pommier Y (1999) Molecular analysis of yeast and human type II topoisomerases. Enzyme-DNA and drug interactions. J Biol Chem 274:28246–28255CrossRefPubMed
31.
go back to reference Zhang H, Gao YG, van der Marel GA, van Boom JH, Wang AH (1993) Simultaneous incorporations of two anticancer drugs into DNA. The structures of formaldehyde-cross-linked adducts of daunorubicin-d(CG(araC)GCG) and doxorubicin-d(CA(araC)GTG) complexes at high resolution. J Biol Chem 268:10095–10101PubMed Zhang H, Gao YG, van der Marel GA, van Boom JH, Wang AH (1993) Simultaneous incorporations of two anticancer drugs into DNA. The structures of formaldehyde-cross-linked adducts of daunorubicin-d(CG(araC)GCG) and doxorubicin-d(CA(araC)GTG) complexes at high resolution. J Biol Chem 268:10095–10101PubMed
32.
go back to reference Kuhns MS, Davis MM, Garcia KC (2006) Deconstructing the form and function of the TCR/CD3 complex. Immunity 24:133–139CrossRefPubMed Kuhns MS, Davis MM, Garcia KC (2006) Deconstructing the form and function of the TCR/CD3 complex. Immunity 24:133–139CrossRefPubMed
33.
go back to reference Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99:167–181CrossRefPubMed Larsen AK, Escargueil AE, Skladanowski A (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol Ther 99:167–181CrossRefPubMed
34.
go back to reference Stiborova M, Sejbal J, Borek-Dohalska L, Aimova D, Poljakova J, Forsterova K, Rupertova M, Wiesner J, Hudecek J, Wiessler M, Frei E (2004) The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res 64:8374–8380CrossRefPubMed Stiborova M, Sejbal J, Borek-Dohalska L, Aimova D, Poljakova J, Forsterova K, Rupertova M, Wiesner J, Hudecek J, Wiessler M, Frei E (2004) The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res 64:8374–8380CrossRefPubMed
35.
go back to reference Krishnan P, Bastow KF (2000) Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivatives—eleutherin, alpha lapachone, and beta lapachone. Biochem Pharmacol 60:1367–1379CrossRefPubMed Krishnan P, Bastow KF (2000) Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivatives—eleutherin, alpha lapachone, and beta lapachone. Biochem Pharmacol 60:1367–1379CrossRefPubMed
36.
go back to reference Li CJ, Averboukh L, Pardee AB (1993) Beta-lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J Biol Chem 268:22463–22468PubMed Li CJ, Averboukh L, Pardee AB (1993) Beta-lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J Biol Chem 268:22463–22468PubMed
37.
go back to reference Morschhauser F, Dreyling M, Rohatiner A, Hagemeister F, Bischof Delaloye A (2009) Rationale for consolidation to improve progression-free survival in patients with non-Hodgkin’s lymphoma: a review of the evidence. Oncologist 14(Suppl 2):17–29CrossRefPubMed Morschhauser F, Dreyling M, Rohatiner A, Hagemeister F, Bischof Delaloye A (2009) Rationale for consolidation to improve progression-free survival in patients with non-Hodgkin’s lymphoma: a review of the evidence. Oncologist 14(Suppl 2):17–29CrossRefPubMed
38.
go back to reference Sebban C, Mounier N, Brousse N, Belanger C, Brice P, Haioun C, Tilly H, Feugier P, Bouabdallah R, Doyen C, Salles G, Coiffier B (2006) Standard chemotherapy with interferon compared with CHOP followed by high-dose therapy with autologous stem cell transplantation in untreated patients with advanced follicular lymphoma: the GELF-94 randomized study from the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 108:2540–2544CrossRefPubMed Sebban C, Mounier N, Brousse N, Belanger C, Brice P, Haioun C, Tilly H, Feugier P, Bouabdallah R, Doyen C, Salles G, Coiffier B (2006) Standard chemotherapy with interferon compared with CHOP followed by high-dose therapy with autologous stem cell transplantation in untreated patients with advanced follicular lymphoma: the GELF-94 randomized study from the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood 108:2540–2544CrossRefPubMed
39.
40.
go back to reference Guano F, Pourquier P, Tinelli S, Binaschi M, Bigioni M, Animati F, Manzini S, Zunino F, Kohlhagen G, Pommier Y, Capranico G (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56:77–84PubMed Guano F, Pourquier P, Tinelli S, Binaschi M, Bigioni M, Animati F, Manzini S, Zunino F, Kohlhagen G, Pommier Y, Capranico G (1999) Topoisomerase poisoning activity of novel disaccharide anthracyclines. Mol Pharmacol 56:77–84PubMed
41.
go back to reference Collins I, Weber A, Levens D (2001) Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 21:8437–8451CrossRefPubMed Collins I, Weber A, Levens D (2001) Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 21:8437–8451CrossRefPubMed
42.
go back to reference Daigeler A, Klein-Hitpass L, Chromik MA, Muller O, Hauser J, Homann HH, Steinau HU, Lehnhardt M (2008) Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 8:313CrossRefPubMed Daigeler A, Klein-Hitpass L, Chromik MA, Muller O, Hauser J, Homann HH, Steinau HU, Lehnhardt M (2008) Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 8:313CrossRefPubMed
43.
go back to reference Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares FA, Oliveira CT, Reis LF, Kaiano JH, Camargo LP, Vencio RZ, Snitcovsky IM, Makdissi FB, e Silva PJ, Goes JC, Brentani MM (2005) Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 11:7434–7443CrossRefPubMed Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, Netto MM, Caldeira JR, Katayama ML, Soares FA, Oliveira CT, Reis LF, Kaiano JH, Camargo LP, Vencio RZ, Snitcovsky IM, Makdissi FB, e Silva PJ, Goes JC, Brentani MM (2005) Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 11:7434–7443CrossRefPubMed
44.
go back to reference Reymann S, Borlak J (2008) Topoisomerase II inhibition involves characteristic chromosomal expression patterns. BMC Genomics 9:324CrossRefPubMed Reymann S, Borlak J (2008) Topoisomerase II inhibition involves characteristic chromosomal expression patterns. BMC Genomics 9:324CrossRefPubMed
45.
go back to reference Zunino F, Capranico G (1990) DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 5:307–317PubMed Zunino F, Capranico G (1990) DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 5:307–317PubMed
46.
go back to reference Foglesong PD, Reckord C, Swink S (1992) Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol 30:123–125CrossRefPubMed Foglesong PD, Reckord C, Swink S (1992) Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol 30:123–125CrossRefPubMed
47.
go back to reference Crow RT, Crothers DM (1994) Inhibition of topoisomerase I by anthracycline antibiotics: evidence for general inhibition of topoisomerase I by DNA-binding agents. J Med Chem 37:3191–3194CrossRefPubMed Crow RT, Crothers DM (1994) Inhibition of topoisomerase I by anthracycline antibiotics: evidence for general inhibition of topoisomerase I by DNA-binding agents. J Med Chem 37:3191–3194CrossRefPubMed
48.
go back to reference Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337CrossRefPubMed Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337CrossRefPubMed
49.
go back to reference Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114:75–85CrossRefPubMed Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114:75–85CrossRefPubMed
50.
go back to reference Shah R, El-Deiry WS (2004) P53-dependent activation of a molecular beacon in tumor cells following exposure to doxorubicin chemotherapy. Cancer Biol Ther 3:871–875CrossRefPubMed Shah R, El-Deiry WS (2004) P53-dependent activation of a molecular beacon in tumor cells following exposure to doxorubicin chemotherapy. Cancer Biol Ther 3:871–875CrossRefPubMed
51.
52.
go back to reference Gonzalez PA, Carreno LJ, Coombs D, Mora JE, Palmieri E, Goldstein B, Nathenson SG, Kalergis AM (2005) T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc Natl Acad Sci USA 102:4824–4829CrossRefPubMed Gonzalez PA, Carreno LJ, Coombs D, Mora JE, Palmieri E, Goldstein B, Nathenson SG, Kalergis AM (2005) T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc Natl Acad Sci USA 102:4824–4829CrossRefPubMed
53.
go back to reference Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001CrossRefPubMed Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001CrossRefPubMed
54.
go back to reference Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124CrossRefPubMed Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124CrossRefPubMed
55.
go back to reference Shurin GV, Tourkova IL, Kaneno R, Shurin MR (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183:137–144CrossRefPubMed Shurin GV, Tourkova IL, Kaneno R, Shurin MR (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183:137–144CrossRefPubMed
56.
go back to reference Ewens A, Luo L, Berleth E, Alderfer J, Wollman R, Hafeez BB, Kanter P, Mihich E, Ehrke MJ (2006) Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res 66:5419–5426CrossRefPubMed Ewens A, Luo L, Berleth E, Alderfer J, Wollman R, Hafeez BB, Kanter P, Mihich E, Ehrke MJ (2006) Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res 66:5419–5426CrossRefPubMed
57.
go back to reference Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ, Berleth ES (2003) Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother 52:463–472CrossRefPubMed Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ, Berleth ES (2003) Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother 52:463–472CrossRefPubMed
58.
go back to reference Ferraro C, Quemeneur L, Prigent AF, Taverne C, Revillard JP, Bonnefoy-Berard N (2000) Anthracyclines trigger apoptosis of both g0–g1 and cycling peripheral blood lymphocytes and induce massive deletion of mature T and B cells. Cancer Res 60:1901–1907PubMed Ferraro C, Quemeneur L, Prigent AF, Taverne C, Revillard JP, Bonnefoy-Berard N (2000) Anthracyclines trigger apoptosis of both g0–g1 and cycling peripheral blood lymphocytes and induce massive deletion of mature T and B cells. Cancer Res 60:1901–1907PubMed
59.
go back to reference Zitvogel L, Kroemer G (2008) The dilemma of anticancer therapy: tumor-specific versus immune effects. Blood 112:4364–4365CrossRefPubMed Zitvogel L, Kroemer G (2008) The dilemma of anticancer therapy: tumor-specific versus immune effects. Blood 112:4364–4365CrossRefPubMed
60.
go back to reference Creasey WA, McIntosh LS, Brescia T, Odujinrin O, Aspnes GT, Murray E, Marsh JC (1976) Clinical effects and pharmacokinetics of different dosage schedules of adriamycin. Cancer Res 36:216–221PubMed Creasey WA, McIntosh LS, Brescia T, Odujinrin O, Aspnes GT, Murray E, Marsh JC (1976) Clinical effects and pharmacokinetics of different dosage schedules of adriamycin. Cancer Res 36:216–221PubMed
61.
go back to reference Reich SD, Steinberg F, Bachur NR, Riggs CE Jr, Goebel R, Berman M (1979) Mathematical model for adriamycin (doxorubicin) pharmacokinetics. Cancer Chemother Pharmacol 3:125–131PubMed Reich SD, Steinberg F, Bachur NR, Riggs CE Jr, Goebel R, Berman M (1979) Mathematical model for adriamycin (doxorubicin) pharmacokinetics. Cancer Chemother Pharmacol 3:125–131PubMed
62.
go back to reference Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W, Eckelhart E, Stoiber D, Weisz E, Schmid JA, Pickl WF, Baumgartner C, Valent P, Piekorz RP, Freissmuth M, Sexl V (2008) Leukemic challenge unmasks a requirement for PI3kdelta in NK cell-mediated tumor surveillance. Blood 112:4655–4664CrossRefPubMed Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W, Eckelhart E, Stoiber D, Weisz E, Schmid JA, Pickl WF, Baumgartner C, Valent P, Piekorz RP, Freissmuth M, Sexl V (2008) Leukemic challenge unmasks a requirement for PI3kdelta in NK cell-mediated tumor surveillance. Blood 112:4655–4664CrossRefPubMed
63.
go back to reference June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716CrossRefPubMed June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716CrossRefPubMed
64.
go back to reference Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683CrossRefPubMed Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683CrossRefPubMed
Metadata
Title
Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells
Authors
Timothy J. Haggerty
Ian S. Dunn
Lenora B. Rose
Estelle E. Newton
Sunil Martin
James L. Riley
James T. Kurnick
Publication date
01-01-2011
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 1/2011
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-010-0926-x

Other articles of this Issue 1/2011

Cancer Immunology, Immunotherapy 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine