Skip to main content
Top
Published in: Respiratory Research 1/2015

Open Access 01-12-2015 | Research

TNFα-blockade stabilizes local airway hyperresponsiveness during TLR-induced exacerbations in murine model of asthma

Authors: Magnus Starkhammar, Susanna Kumlien Georén, Sven-Erik Dahlén, Lars-Olaf Cardell, Mikael Adner

Published in: Respiratory Research | Issue 1/2015

Login to get access

Abstract

Viral infections are a common cause of asthma exacerbation. These maladies are sometimes complicated by bacterial infections. Toll-like receptors (TLRs) are in the forefront of our microbial defence, with TLR3 responding to viral and TLR4 to bacterial stimulation. The present study was designed to evaluate the effect of concomitant TLR3 and TLR4 stimulation in a murine model of allergic asthma.
BALB/c mice were stimulated intranasally with a combination of poly(I:C) and LPS activating TLR3 and TLR4, respectively. This resulted in the development of airway hyperresponsiveness (AHR) in the proximal part of the lung, along with signs of neutrophilic inflammation. Analysis of the bronchioalveolar lavage fluid (BALF) revealed a marked increase in TNFα. In contrast, the allergic airway inflammation induced by ovalbumin administration to sensitized mice caused AHR in the whole lung along with an increase in eosinophils and lymphocytes in the BALF and lung.
When poly(I:C) + LPS were given to mice with an ongoing allergic airway inflammation induced by ovalbumin, the AHR was further increased in the peripheral lung and neutrophils appeared together with eosinophils and lymphocytes in the BALF and lung. Treatment with the TNFα-blocking antibody infliximab blunted the AHR increase, without affecting the cells influx in BALF.
To conclude; a combined TLR3- and TLR4-stimulation, representing a concomitant viral and bacterial infection, causes an AHR that is further exaggerated during an ongoing allergic inflammation. The airway stabilizing effect of infliximab indicates the possible future use of TNFα blockade in treatment of microbial induced exacerbations of allergic asthma.
Literature
4.
go back to reference van den Bergh MR, Biesbroek G, Rossen JW, de Steenhuijsen Piters WA, Bosch AA, van Gils EJ, et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS One. 2012;7:e47711.CrossRefPubMedPubMedCentral van den Bergh MR, Biesbroek G, Rossen JW, de Steenhuijsen Piters WA, Bosch AA, van Gils EJ, et al. Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria. PLoS One. 2012;7:e47711.CrossRefPubMedPubMedCentral
5.
go back to reference Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.CrossRefPubMed Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30:16–34.CrossRefPubMed
7.
go back to reference Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet. 2002;359:831–4.CrossRefPubMed Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet. 2002;359:831–4.CrossRefPubMed
8.
go back to reference Olenec JP, Kim WK, Lee WM, Vang F, Pappas TE, Salazar LE, et al. Weekly monitoring of children with asthma for infections and illness during common cold seasons. J Allergy Clin Immunol. 2010;125:1001–1006 e1001.CrossRefPubMedPubMedCentral Olenec JP, Kim WK, Lee WM, Vang F, Pappas TE, Salazar LE, et al. Weekly monitoring of children with asthma for infections and illness during common cold seasons. J Allergy Clin Immunol. 2010;125:1001–1006 e1001.CrossRefPubMedPubMedCentral
9.
go back to reference Micillo E, Bianco A, D’Auria D, Mazzarella G, Abbate GF. Respiratory infections and asthma. Allergy. 2000;55 Suppl 61:42–5.CrossRefPubMed Micillo E, Bianco A, D’Auria D, Mazzarella G, Abbate GF. Respiratory infections and asthma. Allergy. 2000;55 Suppl 61:42–5.CrossRefPubMed
10.
go back to reference Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354:697–708.CrossRefPubMed Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354:697–708.CrossRefPubMed
11.
go back to reference Starkhammar M, Kumlien Georen S, Swedin L, Dahlen SE, Adner M, Cardell LO. Intranasal administration of poly(I:C) and LPS in BALB/c mice induces airway hyperresponsiveness and inflammation via different pathways. PLoS One. 2012;7:e32110.CrossRefPubMedPubMedCentral Starkhammar M, Kumlien Georen S, Swedin L, Dahlen SE, Adner M, Cardell LO. Intranasal administration of poly(I:C) and LPS in BALB/c mice induces airway hyperresponsiveness and inflammation via different pathways. PLoS One. 2012;7:e32110.CrossRefPubMedPubMedCentral
12.
go back to reference Swedin L, Ellis R, Kemi C, Ryrfeldt A, Inman M, Dahlen SE, et al. Comparison of aerosol and intranasal challenge in a mouse model of allergic airway inflammation and hyperresponsiveness. Int Arch Allergy Immunol. 2010;153:249–58.CrossRefPubMed Swedin L, Ellis R, Kemi C, Ryrfeldt A, Inman M, Dahlen SE, et al. Comparison of aerosol and intranasal challenge in a mouse model of allergic airway inflammation and hyperresponsiveness. Int Arch Allergy Immunol. 2010;153:249–58.CrossRefPubMed
13.
go back to reference Starkhammar M, Larsson O, Kumlien Georen S, Leino M, Dahlen SE, Adner M, et al. Toll-like receptor ligands LPS and poly (I:C) exacerbate airway hyperresponsiveness in a model of airway allergy in mice, independently of inflammation. PLoS One. 2014;9:e104114.CrossRefPubMedPubMedCentral Starkhammar M, Larsson O, Kumlien Georen S, Leino M, Dahlen SE, Adner M, et al. Toll-like receptor ligands LPS and poly (I:C) exacerbate airway hyperresponsiveness in a model of airway allergy in mice, independently of inflammation. PLoS One. 2014;9:e104114.CrossRefPubMedPubMedCentral
14.
go back to reference Bachar O, Adner M, Uddman R, Cardell LO. Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur J Immunol. 2004;34:1196–207.CrossRefPubMed Bachar O, Adner M, Uddman R, Cardell LO. Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-kappa B signaling pathways. Eur J Immunol. 2004;34:1196–207.CrossRefPubMed
15.
go back to reference Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol. 2007;178:1164–71.CrossRefPubMed Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol. 2007;178:1164–71.CrossRefPubMed
16.
go back to reference Krisher T, Bar-Shavit Z. Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem. 2014;115:2146–54.CrossRefPubMed Krisher T, Bar-Shavit Z. Regulation of osteoclastogenesis by integrated signals from toll-like receptors. J Cell Biochem. 2014;115:2146–54.CrossRefPubMed
18.
go back to reference Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23:121–8.CrossRefPubMed Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23:121–8.CrossRefPubMed
19.
go back to reference Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60:1012–8.CrossRefPubMedPubMedCentral Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60:1012–8.CrossRefPubMedPubMedCentral
20.
go back to reference Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlén SE, et al. T03 Asthma Investigators. Am J Respir Crit Care Med. 2009;179:549–58.CrossRefPubMed Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlén SE, et al. T03 Asthma Investigators. Am J Respir Crit Care Med. 2009;179:549–58.CrossRefPubMed
21.
go back to reference Adner M, Starkhammar M, Georen SK, Dahlen SE, Cardell LO. Toll-like receptor (TLR) 7 decreases and TLR9 increases the airway responses in mice with established allergic inflammation. Eur J Pharmacol. 2013;718:544–51.CrossRefPubMed Adner M, Starkhammar M, Georen SK, Dahlen SE, Cardell LO. Toll-like receptor (TLR) 7 decreases and TLR9 increases the airway responses in mice with established allergic inflammation. Eur J Pharmacol. 2013;718:544–51.CrossRefPubMed
22.
go back to reference Safholm J, Lovdahl C, Swedin L, Boels PJ, Dahlen SE, Arner A, et al. Inflammation-induced airway smooth muscle responsiveness is strain dependent in mice. Pulm Pharmacol Ther. 2011;24(4):361–6.CrossRefPubMed Safholm J, Lovdahl C, Swedin L, Boels PJ, Dahlen SE, Arner A, et al. Inflammation-induced airway smooth muscle responsiveness is strain dependent in mice. Pulm Pharmacol Ther. 2011;24(4):361–6.CrossRefPubMed
23.
go back to reference Backus-Hazzard GS, Howden R, Kleeberger SR. Genetic susceptibility to ozone-induced lung inflammation in animal models of asthma. Curr Opin Allergy Clin Immunol. 2004;4:349–53.CrossRefPubMed Backus-Hazzard GS, Howden R, Kleeberger SR. Genetic susceptibility to ozone-induced lung inflammation in animal models of asthma. Curr Opin Allergy Clin Immunol. 2004;4:349–53.CrossRefPubMed
24.
go back to reference Lundblad LK, Thompson-Figueroa J, Allen GB, Rinaldi L, Norton RJ, Irvin CG, et al. Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. Am J Respir Crit Care Med. 2007;175:768–74.CrossRefPubMedPubMedCentral Lundblad LK, Thompson-Figueroa J, Allen GB, Rinaldi L, Norton RJ, Irvin CG, et al. Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. Am J Respir Crit Care Med. 2007;175:768–74.CrossRefPubMedPubMedCentral
25.
go back to reference Krishnan S, Halonen M, Welliver RC. Innate immune responses in respiratory syncytial virus infections. Viral Immunol. 2004;17:220–33.CrossRefPubMed Krishnan S, Halonen M, Welliver RC. Innate immune responses in respiratory syncytial virus infections. Viral Immunol. 2004;17:220–33.CrossRefPubMed
26.
go back to reference Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, et al. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol. 2013;49:845–54.CrossRefPubMedPubMedCentral Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, et al. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol. 2013;49:845–54.CrossRefPubMedPubMedCentral
27.
go back to reference van den Berge M, ten Hacken NH, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139:412–23.CrossRefPubMed van den Berge M, ten Hacken NH, Cohen J, Douma WR, Postma DS. Small airway disease in asthma and COPD: clinical implications. Chest. 2011;139:412–23.CrossRefPubMed
28.
go back to reference Kaminsky DA. Peripheral lung mechanics in asthma: exploring the outer limits. Pulm Pharmacol Ther. 2011;24:199–202.CrossRefPubMed Kaminsky DA. Peripheral lung mechanics in asthma: exploring the outer limits. Pulm Pharmacol Ther. 2011;24:199–202.CrossRefPubMed
29.
go back to reference Gibbons WJ, Sharma A, Lougheed D, Macklem PT. Detection of excessive bronchoconstriction in asthma. Am J Respir Crit Care Med. 1996;153:582–9.CrossRefPubMed Gibbons WJ, Sharma A, Lougheed D, Macklem PT. Detection of excessive bronchoconstriction in asthma. Am J Respir Crit Care Med. 1996;153:582–9.CrossRefPubMed
30.
go back to reference in’t Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000;161:1902–6.CrossRef in’t Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med. 2000;161:1902–6.CrossRef
31.
go back to reference Sorkness RL, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Chung KF, et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol (1985). 2008;104:394–403.CrossRef Sorkness RL, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Chung KF, et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol (1985). 2008;104:394–403.CrossRef
32.
go back to reference Bachar O, Adner M, Cardell LO. Toll-like receptor activation in airway smooth muscle: dual actions via separate MAPK pathways. Am J Physiol. 2006;291:L322–3. Bachar O, Adner M, Cardell LO. Toll-like receptor activation in airway smooth muscle: dual actions via separate MAPK pathways. Am J Physiol. 2006;291:L322–3.
33.
go back to reference Zhang Y, Adner M, Cardell LO. IL-1beta-induced transcriptional up-regulation of bradykinin B1 and B2 receptors in murine airways. Am J Respir Cell Mol Biol. 2007;36:697–705.CrossRefPubMed Zhang Y, Adner M, Cardell LO. IL-1beta-induced transcriptional up-regulation of bradykinin B1 and B2 receptors in murine airways. Am J Respir Cell Mol Biol. 2007;36:697–705.CrossRefPubMed
Metadata
Title
TNFα-blockade stabilizes local airway hyperresponsiveness during TLR-induced exacerbations in murine model of asthma
Authors
Magnus Starkhammar
Susanna Kumlien Georén
Sven-Erik Dahlén
Lars-Olaf Cardell
Mikael Adner
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2015
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-015-0292-5

Other articles of this Issue 1/2015

Respiratory Research 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.