Skip to main content
Top
Published in: Acta Neurologica Belgica 2/2024

Open Access 02-11-2023 | Tissue Plasminogen Activator | Review article

The probable role of tissue plasminogen activator/neuroserpin axis in Alzheimer’s disease: a new perspective

Authors: Naif H. Ali, Hayder M. Al-kuraishy, Ali I. Al-Gareeb, Saud A. Alnaaim, Athanasios Alexiou, Marios Papadakis, Hebatallah M. Saad, Gaber El-Saber Batiha

Published in: Acta Neurologica Belgica | Issue 2/2024

Login to get access

Abstract

Alzheimer’s disease (AD) is the most common type of dementia associated with amyloid beta (Aβ) deposition. Dysfunction of the neuronal clearance pathway promotes the accumulation of Aβ. The plasminogen-activating system (PAS) is controlled by various enzymes like tissue plasminogen activators (tPA). Neuronal tPA enhances the conversion of plasminogen to plasmin, which cleaves Aβ; this function is controlled by many inhibitors of PAS, including a plasminogen-activating inhibitor (PAI-1) and neuroserpin. Therefore, the objective of the present narrative review was to explore the potential role of tPA/neuroserpin in the pathogenesis of AD. PAI-1 activity is increased in AD, which is involved in accumulating Aβ. Progressive increase of Aβ level during AD neuropathology is correlated with the over-production of PAI-1 with subsequent reduction of plasmin and tPA activities. Reducing plasmin and tPA activities promote Aβ by reducing Aβ clearance. Neuroserpin plays a critical role in the pathogenesis of AD as it regulates the expression and accumulation of Aβ. Higher expression of neuroserpin inhibits the neuroprotective tPA and the generation of plasmin with subsequent reduction in the clearance of Aβ. These observations raise conflicting evidence on whether neuroserpin is neuroprotective or involved in AD progression. Thus, neuroserpin over-expression with subsequent reduction of tPA may propagate AD neuropathology.

Graphical abstract

Literature
1.
go back to reference Alsubaie N, Al-kuraishy HM, Al-Gareeb AI, Alharbi B, De Waard M, Sabatier J-M et al (2022) Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci 12(10):1290PubMedPubMedCentralCrossRef Alsubaie N, Al-kuraishy HM, Al-Gareeb AI, Alharbi B, De Waard M, Sabatier J-M et al (2022) Statins use in Alzheimer disease: bane or boon from frantic search and narrative review. Brain Sci 12(10):1290PubMedPubMedCentralCrossRef
2.
go back to reference Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT et al (2021) Alzheimer disease. Nat Rev Dis Primers 7(1):1–21CrossRef Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT et al (2021) Alzheimer disease. Nat Rev Dis Primers 7(1):1–21CrossRef
3.
go back to reference Martorana A, Sancesario GM, Esposito Z, Nuccetelli M, Sorge R, Formosa A et al (2012) Plasmin system of Alzheimer’s disease patients: CSF analysis. J Neural Transm 119(7):763–769PubMedCrossRef Martorana A, Sancesario GM, Esposito Z, Nuccetelli M, Sorge R, Formosa A et al (2012) Plasmin system of Alzheimer’s disease patients: CSF analysis. J Neural Transm 119(7):763–769PubMedCrossRef
4.
go back to reference Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Central Nerv Syst Dis 12:1179573520907397 Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: an update. J Central Nerv Syst Dis 12:1179573520907397
5.
go back to reference Wong W (2020) Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care 26(8 Suppl):S177–S183PubMed Wong W (2020) Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care 26(8 Suppl):S177–S183PubMed
6.
go back to reference Van Acker ZP, Bretou M, Annaert W (2019) Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener 14(1):1–20 Van Acker ZP, Bretou M, Annaert W (2019) Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener 14(1):1–20
7.
8.
9.
go back to reference Yuksel M, Tacal O (2019) Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer’s disease development: An up-to-date review. Eur J Pharmacol 856:172415PubMedCrossRef Yuksel M, Tacal O (2019) Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer’s disease development: An up-to-date review. Eur J Pharmacol 856:172415PubMedCrossRef
10.
go back to reference Stevenson TK, Moore SJ, Murphy GG, Lawrence DA (2021) Tissue plasminogen activator in central nervous system physiology and pathology: from synaptic plasticity to Alzheimer’s disease. Thieme Medical Publishers, Inc., New York Stevenson TK, Moore SJ, Murphy GG, Lawrence DA (2021) Tissue plasminogen activator in central nervous system physiology and pathology: from synaptic plasticity to Alzheimer’s disease. Thieme Medical Publishers, Inc., New York
11.
go back to reference Angelucci F, Čechová K, Průša R, Hort J (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 25(3):303–313PubMedCrossRef Angelucci F, Čechová K, Průša R, Hort J (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer’s disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 25(3):303–313PubMedCrossRef
12.
go back to reference Janson CG (2015) Convergence of stroke and Alzheimer’s neurovascular research. Sci Transl Med 7(289):289CrossRef Janson CG (2015) Convergence of stroke and Alzheimer’s neurovascular research. Sci Transl Med 7(289):289CrossRef
13.
go back to reference ElAli A, Bordeleau M, Thériault P, Filali M, Lampron A, Rivest S (2016) Tissue-plasminogen activator attenuates Alzheimer’s disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology 41(5):1297–1307PubMedCrossRef ElAli A, Bordeleau M, Thériault P, Filali M, Lampron A, Rivest S (2016) Tissue-plasminogen activator attenuates Alzheimer’s disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology 41(5):1297–1307PubMedCrossRef
14.
go back to reference Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH et al (2022) Alzheimer’s disease: An update and insights into pathophysiology. Front Aging Neurosci 14:742408PubMedPubMedCentralCrossRef Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH et al (2022) Alzheimer’s disease: An update and insights into pathophysiology. Front Aging Neurosci 14:742408PubMedPubMedCentralCrossRef
15.
go back to reference Advani D, Kumar P. Computational Analysis of Natural Compounds as Cyclin-Dependent Kinase-5 Inhibitors for Alzheimer's and Parkinson's Disease. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT); 2022: IEEE; 2022. p. 1–6. Advani D, Kumar P. Computational Analysis of Natural Compounds as Cyclin-Dependent Kinase-5 Inhibitors for Alzheimer's and Parkinson's Disease. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT); 2022: IEEE; 2022. p. 1–6.
16.
go back to reference Alvarez A, Munoz JP, Maccioni RB (2001) A cdk5–p35 stable complex is involved in the β-amyloid-induced deregulation of cdk5 activity in hippocampal neurons. Exp Cell Res 264(2):266–274PubMedCrossRef Alvarez A, Munoz JP, Maccioni RB (2001) A cdk5–p35 stable complex is involved in the β-amyloid-induced deregulation of cdk5 activity in hippocampal neurons. Exp Cell Res 264(2):266–274PubMedCrossRef
17.
go back to reference Alvarez A, Toro R, Cáceres A, Maccioni RB (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett 459(3):421–426PubMedCrossRef Alvarez A, Toro R, Cáceres A, Maccioni RB (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death. FEBS Lett 459(3):421–426PubMedCrossRef
18.
go back to reference Morrow GB, Mutch NJ. Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1). Semin Thromb Hemost; 2022: Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York; 2022. p. 305–13. Morrow GB, Mutch NJ. Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1). Semin Thromb Hemost; 2022: Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York; 2022. p. 305–13.
20.
go back to reference Jacobsen JS, Comery TA, Martone RL, Elokdah H, Crandall DL, Oganesian A et al (2008) Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci 105(25):8754–8759PubMedPubMedCentralCrossRef Jacobsen JS, Comery TA, Martone RL, Elokdah H, Crandall DL, Oganesian A et al (2008) Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci 105(25):8754–8759PubMedPubMedCentralCrossRef
21.
go back to reference Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A et al (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 4(12):1190–1196PubMedPubMedCentralCrossRef Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A et al (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep 4(12):1190–1196PubMedPubMedCentralCrossRef
22.
go back to reference Angelucci F, Spalletta G, Iulio Fd, Ciaramella A, Salani F, Varsi A et al (2010) Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res 7(1):15–20PubMedCrossRef Angelucci F, Spalletta G, Iulio Fd, Ciaramella A, Salani F, Varsi A et al (2010) Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res 7(1):15–20PubMedCrossRef
23.
go back to reference Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nat Rev Neurosci 1(1):51–58PubMedCrossRef Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nat Rev Neurosci 1(1):51–58PubMedCrossRef
24.
go back to reference Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG (2000) Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1(6):530–535PubMedPubMedCentralCrossRef Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG (2000) Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO Rep 1(6):530–535PubMedPubMedCentralCrossRef
25.
go back to reference Barker R, Love S, Kehoe PG (2010) Plasminogen and plasmin in Alzheimer’s disease. Brain Res 1355:7–15PubMedCrossRef Barker R, Love S, Kehoe PG (2010) Plasminogen and plasmin in Alzheimer’s disease. Brain Res 1355:7–15PubMedCrossRef
26.
go back to reference Dotti CG, Galvan C, Ledesma MD (2004) Plasmin deficiency in Alzheimer’s disease brains: causal or casual? Neurodegener Dis 1(4–5):205–212PubMedCrossRef Dotti CG, Galvan C, Ledesma MD (2004) Plasmin deficiency in Alzheimer’s disease brains: causal or casual? Neurodegener Dis 1(4–5):205–212PubMedCrossRef
27.
go back to reference Mohammad Nijres B, Huntington JH, Baliulis G, Vettukattil JJ (2019) Intracoronary recombinant tissue plasminogen activator in an infant with hypoplastic left heart syndrome and complete left main coronary artery thrombosis. Catheter Cardiovasc Interv 93(7):E381–E384PubMedCrossRef Mohammad Nijres B, Huntington JH, Baliulis G, Vettukattil JJ (2019) Intracoronary recombinant tissue plasminogen activator in an infant with hypoplastic left heart syndrome and complete left main coronary artery thrombosis. Catheter Cardiovasc Interv 93(7):E381–E384PubMedCrossRef
28.
29.
go back to reference Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H (2018) Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem 119(1):17–27PubMedCrossRef Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H (2018) Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem 119(1):17–27PubMedCrossRef
30.
go back to reference Cai Y, Yang E, Yao X, Zhang X, Wang Q, Wang Y et al (2021) FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol 38:101792PubMedCrossRef Cai Y, Yang E, Yao X, Zhang X, Wang Q, Wang Y et al (2021) FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol 38:101792PubMedCrossRef
32.
go back to reference Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F et al (2005) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 24(9):1706–1716PubMedPubMedCentralCrossRef Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F et al (2005) Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 24(9):1706–1716PubMedPubMedCentralCrossRef
33.
go back to reference Oh SB, Suh N, Kim I, Lee J-Y (2015) Impacts of aging and amyloid-β deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer׳ s disease. Brain Res 1597:159–167CrossRef Oh SB, Suh N, Kim I, Lee J-Y (2015) Impacts of aging and amyloid-β deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer׳ s disease. Brain Res 1597:159–167CrossRef
34.
go back to reference Wang J, Yuan Y, Cai R, Huang R, Tian S, Lin H et al (2018) Association between plasma levels of PAI-1, tPA/PAI-1 molar ratio, and mild cognitive impairment in Chinese patients with type 2 diabetes mellitus. J Alzheimers Dis 63(2):835–845PubMedCrossRef Wang J, Yuan Y, Cai R, Huang R, Tian S, Lin H et al (2018) Association between plasma levels of PAI-1, tPA/PAI-1 molar ratio, and mild cognitive impairment in Chinese patients with type 2 diabetes mellitus. J Alzheimers Dis 63(2):835–845PubMedCrossRef
35.
go back to reference Oh J, Lee H-J, Song J-H, Park SI, Kim H (2014) Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol 60:87–91PubMedCrossRef Oh J, Lee H-J, Song J-H, Park SI, Kim H (2014) Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol 60:87–91PubMedCrossRef
36.
go back to reference Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β (Aβ) degradation and inhibits Aβ-induced neurodegeneration. J Neurosci 23(26):8867–8871PubMedPubMedCentralCrossRef Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-β (Aβ) degradation and inhibits Aβ-induced neurodegeneration. J Neurosci 23(26):8867–8871PubMedPubMedCentralCrossRef
37.
go back to reference Oh SB, Byun CJ, Yun J-H, Jo D-G, Carmeliet P, Koh J-Y et al (2014) Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging 35(3):511–519PubMedCrossRef Oh SB, Byun CJ, Yun J-H, Jo D-G, Carmeliet P, Koh J-Y et al (2014) Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging 35(3):511–519PubMedCrossRef
38.
go back to reference Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A et al (2019) Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res Ther 11:1–11CrossRef Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A et al (2019) Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res Ther 11:1–11CrossRef
39.
go back to reference Tian C, Stewart T, Hong Z, Guo Z, Aro P, Soltys D, et al. (2022) Blood extracellular vesicles carrying synaptic function‐and brain‐related proteins as potential biomarkers for Alzheimer's disease. Alzheimer's & Dementia. Tian C, Stewart T, Hong Z, Guo Z, Aro P, Soltys D, et al. (2022) Blood extracellular vesicles carrying synaptic function‐and brain‐related proteins as potential biomarkers for Alzheimer's disease. Alzheimer's & Dementia.
40.
go back to reference Ranasinghe KG, Verma P, Cai C, Xie X, Kudo K, Gao X et al (2022) Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. Life 11:e77850 Ranasinghe KG, Verma P, Cai C, Xie X, Kudo K, Gao X et al (2022) Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer’s disease. Life 11:e77850
41.
go back to reference Gregnani MF, Hungaro TG, Martins-Silva L, Bader M, Araujo RC (2020) Bradykinin B2 receptor signaling increases glucose uptake and oxidation: evidence and open questions. Front Pharmacol 11:1162PubMedPubMedCentralCrossRef Gregnani MF, Hungaro TG, Martins-Silva L, Bader M, Araujo RC (2020) Bradykinin B2 receptor signaling increases glucose uptake and oxidation: evidence and open questions. Front Pharmacol 11:1162PubMedPubMedCentralCrossRef
42.
go back to reference Padmanabhan P, Kneynsberg A, Götz J (2021) Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 22(12):723–740PubMedCrossRef Padmanabhan P, Kneynsberg A, Götz J (2021) Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease. Nat Rev Neurosci 22(12):723–740PubMedCrossRef
43.
go back to reference Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E et al (2021) An unbalanced synaptic transmission: cause or consequence of the amyloid oligomers neurotoxicity? Int J Mol Sci 22(11):5991PubMedPubMedCentralCrossRef Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E et al (2021) An unbalanced synaptic transmission: cause or consequence of the amyloid oligomers neurotoxicity? Int J Mol Sci 22(11):5991PubMedPubMedCentralCrossRef
45.
go back to reference Lozupone M, Panza F (2024) Impact of apolipoprotein E isoforms on sporadic Alzheimer’s disease: Beyond the role of amyloid beta. Neural Regen Res 19(1):80–83PubMedCrossRef Lozupone M, Panza F (2024) Impact of apolipoprotein E isoforms on sporadic Alzheimer’s disease: Beyond the role of amyloid beta. Neural Regen Res 19(1):80–83PubMedCrossRef
46.
go back to reference Panza F, Solfrizzi V, Imbimbo BP, Logroscino G (2014) Amyloid-directed monoclonal antibodies for the treatment of Alzheimer’s disease: the point of no return? Expert Opin Biol Ther 14(10):1465–1476PubMedCrossRef Panza F, Solfrizzi V, Imbimbo BP, Logroscino G (2014) Amyloid-directed monoclonal antibodies for the treatment of Alzheimer’s disease: the point of no return? Expert Opin Biol Ther 14(10):1465–1476PubMedCrossRef
47.
go back to reference Mukhopadhyay S, Banerjee D (2021) A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers Dis 83(4):1537–1552PubMedCrossRef Mukhopadhyay S, Banerjee D (2021) A primer on the evolution of aducanumab: the first antibody approved for treatment of Alzheimer’s disease. J Alzheimers Dis 83(4):1537–1552PubMedCrossRef
48.
go back to reference Camuso S, Canterini S (2023) Brain-derived neurotrophic factor in main neurodegenerative diseases. Neural Regen Res 18(3):554PubMedCrossRef Camuso S, Canterini S (2023) Brain-derived neurotrophic factor in main neurodegenerative diseases. Neural Regen Res 18(3):554PubMedCrossRef
49.
go back to reference Sánchez-García S, Moreno-Tamayo K, Ramírez-Aldana R, García-Peña C, Medina-Campos RH et al (2023) Insomnia Impairs Both the Pro-BDNF and the BDNF levels similarly to older adults with cognitive decline: an exploratory study. Int J Mol Sci 24(8):7387PubMedPubMedCentralCrossRef Sánchez-García S, Moreno-Tamayo K, Ramírez-Aldana R, García-Peña C, Medina-Campos RH et al (2023) Insomnia Impairs Both the Pro-BDNF and the BDNF levels similarly to older adults with cognitive decline: an exploratory study. Int J Mol Sci 24(8):7387PubMedPubMedCentralCrossRef
50.
go back to reference Gao J, Li L (2023) Enhancement of neural regeneration as a therapeutic strategy for Alzheimer’s disease. Exp Ther Med 26(3):1–14CrossRef Gao J, Li L (2023) Enhancement of neural regeneration as a therapeutic strategy for Alzheimer’s disease. Exp Ther Med 26(3):1–14CrossRef
51.
go back to reference Pavon MV, Navakkode S, Wong L-W, Sajikumar S (2023) Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer’s disease. Semin Cell Dev Biol 2023:111–120CrossRef Pavon MV, Navakkode S, Wong L-W, Sajikumar S (2023) Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer’s disease. Semin Cell Dev Biol 2023:111–120CrossRef
52.
go back to reference Sahlgren Bendtsen KM, Hall VJ (2023) The breakthroughs and caveats of using human pluripotent stem cells in modeling Alzheimer’s disease. Cells 12(3):420PubMedPubMedCentralCrossRef Sahlgren Bendtsen KM, Hall VJ (2023) The breakthroughs and caveats of using human pluripotent stem cells in modeling Alzheimer’s disease. Cells 12(3):420PubMedPubMedCentralCrossRef
53.
go back to reference Gerenu G, Martisova E, Ferrero H, Carracedo M, Rantamäki T, Ramirez MJ et al (1863) (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochem Biophys Acta 4:991–1001 Gerenu G, Martisova E, Ferrero H, Carracedo M, Rantamäki T, Ramirez MJ et al (1863) (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochem Biophys Acta 4:991–1001
54.
go back to reference Gao L, Zhang Y, Sterling K, Song W (2022) Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegen 11(1):1–34CrossRef Gao L, Zhang Y, Sterling K, Song W (2022) Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegen 11(1):1–34CrossRef
55.
go back to reference Coleman M, Durrant CS, Ruscher K, Sheppard O, Özen I (2020) Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signaling. Coleman M, Durrant CS, Ruscher K, Sheppard O, Özen I (2020) Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signaling.
56.
go back to reference Park L, Zhou J, Koizumi K, Wang G, Anfray A, Ahn SJ et al (2020) tPA deficiency underlies neurovascular coupling dysfunction by amyloid-β. J Neurosci 40(42):8160–8173PubMedPubMedCentralCrossRef Park L, Zhou J, Koizumi K, Wang G, Anfray A, Ahn SJ et al (2020) tPA deficiency underlies neurovascular coupling dysfunction by amyloid-β. J Neurosci 40(42):8160–8173PubMedPubMedCentralCrossRef
57.
go back to reference Yang X, Zhang Y, Luo J-x, Zhu T, Ran Z, Mu B-R et al (2023) Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. Naunyn-Schmiedeberg’s Arch Pharmacol. 90:1–26 Yang X, Zhang Y, Luo J-x, Zhu T, Ran Z, Mu B-R et al (2023) Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. Naunyn-Schmiedeberg’s Arch Pharmacol. 90:1–26
58.
go back to reference Liu R-M, Van Groen T, Katre A, Cao D, Kadisha I, Ballinger C et al (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32(6):1079–1089PubMedCrossRef Liu R-M, Van Groen T, Katre A, Cao D, Kadisha I, Ballinger C et al (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32(6):1079–1089PubMedCrossRef
59.
go back to reference Barrett CD, Moore HB, Kong Y-W, Chapman MP, Sriram G, Lim D et al (2019) Tranexamic acid mediates pro-inflammatory and anti-inflammatory signaling via complement C5a regulation in a plasminogen activator–dependent manner. J Trauma Acute Care Surg 86(1):101–107PubMedCrossRef Barrett CD, Moore HB, Kong Y-W, Chapman MP, Sriram G, Lim D et al (2019) Tranexamic acid mediates pro-inflammatory and anti-inflammatory signaling via complement C5a regulation in a plasminogen activator–dependent manner. J Trauma Acute Care Surg 86(1):101–107PubMedCrossRef
60.
go back to reference Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y et al (2020) IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci 117(36):22351–22356PubMedPubMedCentralCrossRef Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S, Kioi Y et al (2020) IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci 117(36):22351–22356PubMedPubMedCentralCrossRef
61.
go back to reference Holmes C (2013) Systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 39(1):51–68PubMedCrossRef Holmes C (2013) Systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 39(1):51–68PubMedCrossRef
62.
go back to reference D’Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G et al (2021) Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 78(19–20):6409–6430PubMedPubMedCentralCrossRef D’Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G et al (2021) Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 78(19–20):6409–6430PubMedPubMedCentralCrossRef
63.
go back to reference Lorenz N, Loef EJ, Verdon DJ, Chen C-JJ, Mansell CJ, Angel CE et al (2015) Human T cell activation induces synaptic translocation and alters expression of the serine protease inhibitor neuroserpin and its target protease. J Leucocyte Biol 97(4):699–710CrossRef Lorenz N, Loef EJ, Verdon DJ, Chen C-JJ, Mansell CJ, Angel CE et al (2015) Human T cell activation induces synaptic translocation and alters expression of the serine protease inhibitor neuroserpin and its target protease. J Leucocyte Biol 97(4):699–710CrossRef
64.
go back to reference Munuswamy-Ramanujam G, Dai E, Liu L, Shnabel M, Sun YM, Bartee M et al (2010) Neuroserpin, a thrombolytic serine protease inhibitor (serpin), blocks transplant vasculopathy with associated modification of T-helper cell subsets. Thromb Haemost 103(03):545–555PubMedCrossRef Munuswamy-Ramanujam G, Dai E, Liu L, Shnabel M, Sun YM, Bartee M et al (2010) Neuroserpin, a thrombolytic serine protease inhibitor (serpin), blocks transplant vasculopathy with associated modification of T-helper cell subsets. Thromb Haemost 103(03):545–555PubMedCrossRef
65.
go back to reference Tamer SA, Gürol G, Tekeoğlu İ, Harman H, Çiftçi İH (2016) A new explanation of inflammation in rheumatoid arthritis patients with respect to claudin-5, matrix metalloproteinase-9, and neuroserpin. Arch Rheumatol 31(4):299PubMedPubMedCentralCrossRef Tamer SA, Gürol G, Tekeoğlu İ, Harman H, Çiftçi İH (2016) A new explanation of inflammation in rheumatoid arthritis patients with respect to claudin-5, matrix metalloproteinase-9, and neuroserpin. Arch Rheumatol 31(4):299PubMedPubMedCentralCrossRef
66.
go back to reference Loef EJ, Brooks AE, Lorenz N, Birch NP, Dunbar PR (2020) Neuroserpin regulates human T cell-T cell interactions and proliferation through inhibition of tissue plasminogen activator. J Leukoc Biol 107(1):145–158PubMedCrossRef Loef EJ, Brooks AE, Lorenz N, Birch NP, Dunbar PR (2020) Neuroserpin regulates human T cell-T cell interactions and proliferation through inhibition of tissue plasminogen activator. J Leukoc Biol 107(1):145–158PubMedCrossRef
67.
go back to reference Adorjan I, Tyler T, Bhaduri A, Demharter S, Finszter CK, Bako M et al (2019) Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell RNA sequencing. J Anat 235(3):543–554PubMedPubMedCentralCrossRef Adorjan I, Tyler T, Bhaduri A, Demharter S, Finszter CK, Bako M et al (2019) Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell RNA sequencing. J Anat 235(3):543–554PubMedPubMedCentralCrossRef
68.
go back to reference Reumann R, Vierk R, Zhou L, Gries F, Kraus V, Mienert J et al (2017) The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learn Memory 24(12):650–659CrossRef Reumann R, Vierk R, Zhou L, Gries F, Kraus V, Mienert J et al (2017) The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learn Memory 24(12):650–659CrossRef
69.
go back to reference Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S et al (2022) Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell–cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 79(3):172PubMedPubMedCentralCrossRef Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S et al (2022) Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell–cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 79(3):172PubMedPubMedCentralCrossRef
70.
go back to reference Gelderblom M, Neumann M, Ludewig P, Bernreuther C, Krasemann S, Arunachalam P et al (2013) Deficiency in serine protease inhibitor neuroserpin exacerbates ischemic brain injury by increased postischemic inflammation. PLoS ONE 8(5):e63118PubMedPubMedCentralCrossRef Gelderblom M, Neumann M, Ludewig P, Bernreuther C, Krasemann S, Arunachalam P et al (2013) Deficiency in serine protease inhibitor neuroserpin exacerbates ischemic brain injury by increased postischemic inflammation. PLoS ONE 8(5):e63118PubMedPubMedCentralCrossRef
71.
go back to reference Zhang Z, Zhang L, Yepes M, Jiang Q, Li Q, Arniego P et al (2002) Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106(6):740–745PubMedCrossRef Zhang Z, Zhang L, Yepes M, Jiang Q, Li Q, Arniego P et al (2002) Adjuvant treatment with neuroserpin increases the therapeutic window for tissue-type plasminogen activator administration in a rat model of embolic stroke. Circulation 106(6):740–745PubMedCrossRef
72.
go back to reference Rodríguez-González R, Millán M, Sobrino T, Miranda E, Brea D, De La Ossa NP et al (2011) The natural tissue plasminogen activator inhibitor neuroserpin and acute ischaemic stroke outcome. Thromb Haemost 105(03):421–429PubMedCrossRef Rodríguez-González R, Millán M, Sobrino T, Miranda E, Brea D, De La Ossa NP et al (2011) The natural tissue plasminogen activator inhibitor neuroserpin and acute ischaemic stroke outcome. Thromb Haemost 105(03):421–429PubMedCrossRef
73.
go back to reference Lebeurrier N, Liot G, Lopez-Atalaya JP, Orset C, Fernandez-Monreal M, Sonderegger P et al (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol Cell Neurosci 30(4):552–558PubMedCrossRef Lebeurrier N, Liot G, Lopez-Atalaya JP, Orset C, Fernandez-Monreal M, Sonderegger P et al (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol Cell Neurosci 30(4):552–558PubMedCrossRef
74.
go back to reference Ding S, Chen Q, Chen H, Luo B, Li C, Wang L et al (2021) The neuroprotective role of neuroserpin in ischemic and hemorrhagic stroke. Curr Neuropharmacol 19(8):1367PubMedPubMedCentralCrossRef Ding S, Chen Q, Chen H, Luo B, Li C, Wang L et al (2021) The neuroprotective role of neuroserpin in ischemic and hemorrhagic stroke. Curr Neuropharmacol 19(8):1367PubMedPubMedCentralCrossRef
76.
go back to reference Sharma A, Muresanu DF, Tian ZR, Nozari A, Lafuente JV, Buzoianu AD et al (2023) Check for updates. Progr Nanomed Neurol Dis 32:195CrossRef Sharma A, Muresanu DF, Tian ZR, Nozari A, Lafuente JV, Buzoianu AD et al (2023) Check for updates. Progr Nanomed Neurol Dis 32:195CrossRef
77.
go back to reference Kinghorn KJ, Crowther DC, Sharp LK, Nerelius C, Davis RL, Chang HT et al (2006) Neuroserpin binds Aβ and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem 281(39):29268–29277PubMedCrossRef Kinghorn KJ, Crowther DC, Sharp LK, Nerelius C, Davis RL, Chang HT et al (2006) Neuroserpin binds Aβ and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem 281(39):29268–29277PubMedCrossRef
78.
go back to reference Fabbro S, Schaller K, Seeds NW (2011) Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J Neurochem 118(5):928–938PubMedCrossRef Fabbro S, Schaller K, Seeds NW (2011) Amyloid-beta levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J Neurochem 118(5):928–938PubMedCrossRef
79.
go back to reference Davis RL, Shrimpton AE, Carrell RW, Lomas DA, Gerhard L, Baumann B et al (2002) Association between conformational mutations in neuroserpin and onset and severity of dementia. The Lancet 359(9325):2242–2247CrossRef Davis RL, Shrimpton AE, Carrell RW, Lomas DA, Gerhard L, Baumann B et al (2002) Association between conformational mutations in neuroserpin and onset and severity of dementia. The Lancet 359(9325):2242–2247CrossRef
80.
go back to reference Chiou A, Hägglöf P, Orte A, Chen AY, Dunne PD, Belorgey D et al (2009) Probing neuroserpin polymerization and interaction with amyloid-β peptides using single molecule fluorescence. Biophys J 97(8):2306–2315PubMedPubMedCentralCrossRef Chiou A, Hägglöf P, Orte A, Chen AY, Dunne PD, Belorgey D et al (2009) Probing neuroserpin polymerization and interaction with amyloid-β peptides using single molecule fluorescence. Biophys J 97(8):2306–2315PubMedPubMedCentralCrossRef
81.
go back to reference Lee TW, Tsang VW, Loef EJ, Birch NP. Physiological and pathological functions of neuroserpin: regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol; 2017: Elsevier; 2017. p. 152–9. Lee TW, Tsang VW, Loef EJ, Birch NP. Physiological and pathological functions of neuroserpin: regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol; 2017: Elsevier; 2017. p. 152–9.
82.
go back to reference Nielsen HM, Minthon L, Londos E, Blennow K, Miranda E, Perez J et al (2007) Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies. Neurology 69(16):1569–1579PubMedCrossRef Nielsen HM, Minthon L, Londos E, Blennow K, Miranda E, Perez J et al (2007) Plasma and CSF serpins in Alzheimer disease and dementia with Lewy bodies. Neurology 69(16):1569–1579PubMedCrossRef
83.
go back to reference Hanzel CE, Iulita MF, Eyjolfsdottir H, Hjorth E, Schultzberg M, Eriksdotter M et al (2014) Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis 40(3):667–678PubMedCrossRef Hanzel CE, Iulita MF, Eyjolfsdottir H, Hjorth E, Schultzberg M, Eriksdotter M et al (2014) Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis 40(3):667–678PubMedCrossRef
84.
85.
go back to reference Subhadra B, Schaller K, Seeds NW (2013) Neuroserpin up-regulation in the Alzheimer’s disease brain is associated with elevated thyroid hormone receptor-β1 and HuD expression. Neurochem Int 63(5):476–481PubMedPubMedCentralCrossRef Subhadra B, Schaller K, Seeds NW (2013) Neuroserpin up-regulation in the Alzheimer’s disease brain is associated with elevated thyroid hormone receptor-β1 and HuD expression. Neurochem Int 63(5):476–481PubMedPubMedCentralCrossRef
86.
go back to reference Di Meco A, Curtis ME, Lauretti E, Praticò D (2020) Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatry 87(9):797–807PubMedCrossRef Di Meco A, Curtis ME, Lauretti E, Praticò D (2020) Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatry 87(9):797–807PubMedCrossRef
87.
go back to reference Bavarsad K, Hosseini M, Hadjzadeh MAR, Sahebkar A (2019) The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J Cell Physiol 234(9):14633–14640PubMedCrossRef Bavarsad K, Hosseini M, Hadjzadeh MAR, Sahebkar A (2019) The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J Cell Physiol 234(9):14633–14640PubMedCrossRef
88.
go back to reference Choi BW, Kim S, Kang S, Won KS, Yi H-A, Kim HW (2020) Relationship between thyroid hormone levels and the pathology of Alzheimer’s disease in euthyroid subjects. Thyroid 30(11):1547–1555PubMedCrossRef Choi BW, Kim S, Kang S, Won KS, Yi H-A, Kim HW (2020) Relationship between thyroid hormone levels and the pathology of Alzheimer’s disease in euthyroid subjects. Thyroid 30(11):1547–1555PubMedCrossRef
89.
go back to reference AlAnazi FH, Al-kuraishy HM, Alexiou A, Papadakis M, Ashour MHM, Alnaaim SA, et al. (2023) Primary Hypothyroidism and Alzheimer's Disease: A Tale of Two. Cell Mol Neurobiol 2023/08/04. AlAnazi FH, Al-kuraishy HM, Alexiou A, Papadakis M, Ashour MHM, Alnaaim SA, et al. (2023) Primary Hypothyroidism and Alzheimer's Disease: A Tale of Two. Cell Mol Neurobiol 2023/08/04.
90.
go back to reference Iulita MF, Millón MBB, Pentz R, Aguilar LF, Do Carmo S, Allard S et al (2017) Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer’s disease. Neurobiol Dis 108:307–323PubMedCrossRef Iulita MF, Millón MBB, Pentz R, Aguilar LF, Do Carmo S, Allard S et al (2017) Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer’s disease. Neurobiol Dis 108:307–323PubMedCrossRef
91.
go back to reference Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337PubMedPubMedCentralCrossRef Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337PubMedPubMedCentralCrossRef
92.
go back to reference Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695):487–491PubMedCrossRef Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695):487–491PubMedCrossRef
93.
go back to reference Faysel MA, Singer J, Cummings C, Stefanov DG, Levine SR (2019) Disparities in the use of intravenous t-PA among ischemic stroke patients: population-based recent temporal trends. J Stroke Cerebrovasc Dis 28(5):1243–1251PubMedCrossRef Faysel MA, Singer J, Cummings C, Stefanov DG, Levine SR (2019) Disparities in the use of intravenous t-PA among ischemic stroke patients: population-based recent temporal trends. J Stroke Cerebrovasc Dis 28(5):1243–1251PubMedCrossRef
94.
go back to reference AlRuwaili R, Al-kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, et al. (2023) The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2023/07/03. AlRuwaili R, Al-kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, et al. (2023) The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2023/07/03.
95.
go back to reference Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Gareeb AI, Lugnier C (2021) Statins therapy improves acute ischemic stroke in patients with cardio-metabolic disorders measured by lipoprotein-associated phospholipase A2 (Lp-PLA2): New focal point. Neurol India 69(6):1637PubMedCrossRef Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Gareeb AI, Lugnier C (2021) Statins therapy improves acute ischemic stroke in patients with cardio-metabolic disorders measured by lipoprotein-associated phospholipase A2 (Lp-PLA2): New focal point. Neurol India 69(6):1637PubMedCrossRef
96.
go back to reference Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322PubMedCrossRef Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322PubMedCrossRef
97.
go back to reference Li W, Asakawa T, Han S, Xiao B, Namba H, Lu C et al (2017) Neuroprotective effect of neuroserpin in non-tPA-induced intracerebral hemorrhage mouse models. BMC Neurol 17:1–9PubMedPubMedCentralCrossRef Li W, Asakawa T, Han S, Xiao B, Namba H, Lu C et al (2017) Neuroprotective effect of neuroserpin in non-tPA-induced intracerebral hemorrhage mouse models. BMC Neurol 17:1–9PubMedPubMedCentralCrossRef
99.
go back to reference Giampietro C, Lionetti MC, Costantini G, Mutti F, Zapperi S, La Porta CA (2017) Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep 7(1):43669PubMedPubMedCentralCrossRef Giampietro C, Lionetti MC, Costantini G, Mutti F, Zapperi S, La Porta CA (2017) Cholesterol impairment contributes to neuroserpin aggregation. Sci Rep 7(1):43669PubMedPubMedCentralCrossRef
Metadata
Title
The probable role of tissue plasminogen activator/neuroserpin axis in Alzheimer’s disease: a new perspective
Authors
Naif H. Ali
Hayder M. Al-kuraishy
Ali I. Al-Gareeb
Saud A. Alnaaim
Athanasios Alexiou
Marios Papadakis
Hebatallah M. Saad
Gaber El-Saber Batiha
Publication date
02-11-2023
Publisher
Springer International Publishing
Published in
Acta Neurologica Belgica / Issue 2/2024
Print ISSN: 0300-9009
Electronic ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-023-02403-x

Other articles of this Issue 2/2024

Acta Neurologica Belgica 2/2024 Go to the issue