Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Research article

Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks

Authors: Wei Wu, Shu-Yi An, Peng Guan, De-Sheng Huang, Bao-Sen Zhou

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Establishing epidemiological models and conducting predictions seems to be useful for the prevention and control of human brucellosis. Autoregressive integrated moving average (ARIMA) models can capture the long-term trends and the periodic variations in time series. However, these models cannot handle the nonlinear trends correctly. Recurrent neural networks can address problems that involve nonlinear time series data. In this study, we intended to build prediction models for human brucellosis in mainland China with Elman and Jordan neural networks. The fitting and forecasting accuracy of the neural networks were compared with a traditional seasonal ARIMA model.

Methods

The reported human brucellosis cases were obtained from the website of the National Health and Family Planning Commission of China. The human brucellosis cases from January 2004 to December 2017 were assembled as monthly counts. The training set observed from January 2004 to December 2016 was used to build the seasonal ARIMA model, Elman and Jordan neural networks. The test set from January 2017 to December 2017 was used to test the forecast results. The root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to assess the fitting and forecasting accuracy of the three models.

Results

There were 52,868 cases of human brucellosis in Mainland China from January 2004 to December 2017. We observed a long-term upward trend and seasonal variance in the original time series. In the training set, the RMSE and MAE of Elman and Jordan neural networks were lower than those in the ARIMA model, whereas the MAPE of Elman and Jordan neural networks was slightly higher than that in the ARIMA model. In the test set, the RMSE, MAE and MAPE of Elman and Jordan neural networks were far lower than those in the ARIMA model.

Conclusions

The Elman and Jordan recurrent neural networks achieved much higher forecasting accuracy. These models are more suitable for forecasting nonlinear time series data, such as human brucellosis than the traditional ARIMA model.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lai S, Zhou H, Xiong W, Gilbert M, Huang Z, Yu J, Yin W, Wang L, Chen Q, Li Y, et al. Changing epidemiology of human brucellosis, China, 1955-2014. Emerg Infect Dis. 2017;23(2):184–94.CrossRef Lai S, Zhou H, Xiong W, Gilbert M, Huang Z, Yu J, Yin W, Wang L, Chen Q, Li Y, et al. Changing epidemiology of human brucellosis, China, 1955-2014. Emerg Infect Dis. 2017;23(2):184–94.CrossRef
3.
go back to reference Colmenero Castillo JD, Cabrera Franquelo FP, Hernandez Marquez S, Reguera Iglesias JM, Pinedo Sanchez A, Castillo Clavero AM. Socioeconomic effects of human brucellosis. Rev Clin Esp. 1989;185(9):459–63.PubMed Colmenero Castillo JD, Cabrera Franquelo FP, Hernandez Marquez S, Reguera Iglesias JM, Pinedo Sanchez A, Castillo Clavero AM. Socioeconomic effects of human brucellosis. Rev Clin Esp. 1989;185(9):459–63.PubMed
4.
go back to reference Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–86.CrossRef Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–86.CrossRef
5.
go back to reference Deqiu S, Donglou X, Jiming Y. Epidemiology and control of brucellosis in China. Vet Microbiol. 2002;90(1–4):165–82.CrossRef Deqiu S, Donglou X, Jiming Y. Epidemiology and control of brucellosis in China. Vet Microbiol. 2002;90(1–4):165–82.CrossRef
6.
go back to reference Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218.CrossRef Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218.CrossRef
7.
go back to reference Song X, Xiao J, Deng J, Kang Q, Zhang Y, Xu J. Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011. Medicine. 2016;95(26):e3929.CrossRef Song X, Xiao J, Deng J, Kang Q, Zhang Y, Xu J. Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011. Medicine. 2016;95(26):e3929.CrossRef
8.
go back to reference Anwar MY, Lewnard JA, Parikh S, Pitzer VE. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence. Malar J. 2016;15(1):566.CrossRef Anwar MY, Lewnard JA, Parikh S, Pitzer VE. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence. Malar J. 2016;15(1):566.CrossRef
9.
go back to reference Zeng Q, Li D, Huang G, Xia J, Wang X, Zhang Y, Tang W, Zhou H. Time series analysis of temporal trends in the pertussis incidence in mainland China from 2005 to 2016. Sci Rep. 2016;6:32367.CrossRef Zeng Q, Li D, Huang G, Xia J, Wang X, Zhang Y, Tang W, Zhou H. Time series analysis of temporal trends in the pertussis incidence in mainland China from 2005 to 2016. Sci Rep. 2016;6:32367.CrossRef
10.
go back to reference Wang K, Song W, Li J, Lu W, Yu J, Han X. The use of an autoregressive integrated moving average model for prediction of the incidence of dysentery in Jiangsu, China. Asia Pac J Public Health. 2016;28(4):336–46.CrossRef Wang K, Song W, Li J, Lu W, Yu J, Han X. The use of an autoregressive integrated moving average model for prediction of the incidence of dysentery in Jiangsu, China. Asia Pac J Public Health. 2016;28(4):336–46.CrossRef
11.
go back to reference Wang KW, Deng C, Li JP, Zhang YY, Li XY, Wu MC. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol Infect. 2017;145(6):1118–29.CrossRef Wang KW, Deng C, Li JP, Zhang YY, Li XY, Wu MC. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Epidemiol Infect. 2017;145(6):1118–29.CrossRef
12.
go back to reference Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Making. 2018;18(1):39.CrossRef Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Making. 2018;18(1):39.CrossRef
13.
go back to reference Montano Moreno JJ, Palmer Pol A, Munoz Gracia P. Artificial neural networks applied to forecasting time series. Psicothema. 2011;23(2):322–9.PubMed Montano Moreno JJ, Palmer Pol A, Munoz Gracia P. Artificial neural networks applied to forecasting time series. Psicothema. 2011;23(2):322–9.PubMed
14.
go back to reference Hornik K, Stinchcombe M, HJNn W. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.CrossRef Hornik K, Stinchcombe M, HJNn W. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.CrossRef
15.
go back to reference Cross SS, Harrison RF, Kennedy RLJTL. Introduction to neural networks. Lancet. 1995;346(8982):1075–9.CrossRef Cross SS, Harrison RF, Kennedy RLJTL. Introduction to neural networks. Lancet. 1995;346(8982):1075–9.CrossRef
16.
go back to reference Saha S, Raghava GJPS, Function,, Bioinformatics. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Struct Funct Bioinforma. 2006;65(1):40–8.CrossRef Saha S, Raghava GJPS, Function,, Bioinformatics. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Struct Funct Bioinforma. 2006;65(1):40–8.CrossRef
17.
go back to reference Toqeer RS, Bayindir NSJN. Speed estimation of an induction motor using Elman neural network. Neurocomputing. 2003;55(3–4):727–30.CrossRef Toqeer RS, Bayindir NSJN. Speed estimation of an induction motor using Elman neural network. Neurocomputing. 2003;55(3–4):727–30.CrossRef
18.
go back to reference Mankar VR, Ghatol AAJAANS. Design of adaptive filter using Jordan/Elman neural network in a typical EMG signal noise removal. Adv Artif Neural Systems. 2009;2009:4.CrossRef Mankar VR, Ghatol AAJAANS. Design of adaptive filter using Jordan/Elman neural network in a typical EMG signal noise removal. Adv Artif Neural Systems. 2009;2009:4.CrossRef
19.
go back to reference Mesnil G, Dauphin Y, Yao K, Bengio Y, Deng L, Hakkani-Tur D, He X, Heck L, Tur G, DJIAToA Y, Speech, et al. Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Trans Audio Speech Lang Process. 2015;23(3):530–9.CrossRef Mesnil G, Dauphin Y, Yao K, Bengio Y, Deng L, Hakkani-Tur D, He X, Heck L, Tur G, DJIAToA Y, Speech, et al. Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Trans Audio Speech Lang Process. 2015;23(3):530–9.CrossRef
20.
go back to reference Ayaz E, Şeker S, Barutcu B, EJPiNE T. Comparisons between the various types of neural networks with the data of wide range operational conditions of the Borssele NPP. Prog Nucl Energy. 2003;43(1–4):381–7.CrossRef Ayaz E, Şeker S, Barutcu B, EJPiNE T. Comparisons between the various types of neural networks with the data of wide range operational conditions of the Borssele NPP. Prog Nucl Energy. 2003;43(1–4):381–7.CrossRef
21.
go back to reference Guan P, Wu W, Huang D. Trends of reported human brucellosis cases in mainland China from 2007 to 2017: an exponential smoothing time series analysis. Environ Health Prev Med. 2018;23(1):23.CrossRef Guan P, Wu W, Huang D. Trends of reported human brucellosis cases in mainland China from 2007 to 2017: an exponential smoothing time series analysis. Environ Health Prev Med. 2018;23(1):23.CrossRef
22.
go back to reference Cleveland RB, Cleveland WS, McRae JE, Terpenning IJJoOS. STL: a seasonal-trend decomposition. J Off Stat. 1990;6(1):3–73. Cleveland RB, Cleveland WS, McRae JE, Terpenning IJJoOS. STL: a seasonal-trend decomposition. J Off Stat. 1990;6(1):3–73.
23.
go back to reference Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics. 2014;15:276.CrossRef Kane MJ, Price N, Scotch M, Rabinowitz P. Comparison of ARIMA and random Forest time series models for prediction of avian influenza H5N1 outbreaks. BMC Bioinformatics. 2014;15:276.CrossRef
24.
go back to reference Bozdogan HJP. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika. 1987;52(3):345–70.CrossRef Bozdogan HJP. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika. 1987;52(3):345–70.CrossRef
25.
go back to reference Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X. Comparative study of four time series methods in forecasting typhoid fever incidence in China. PLoS One. 2013;8(5):e63116.CrossRef Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X. Comparative study of four time series methods in forecasting typhoid fever incidence in China. PLoS One. 2013;8(5):e63116.CrossRef
26.
go back to reference Liu X, Jiang B, Bi P, Yang W, Liu Q. Prevalence of haemorrhagic fever with renal syndrome in mainland China: analysis of National Surveillance Data, 2004-2009. Epidemiol Infect. 2012;140(5):851–7.CrossRef Liu X, Jiang B, Bi P, Yang W, Liu Q. Prevalence of haemorrhagic fever with renal syndrome in mainland China: analysis of National Surveillance Data, 2004-2009. Epidemiol Infect. 2012;140(5):851–7.CrossRef
27.
go back to reference Zhang GP, Patuwo BE, Hu MYJC, Research O. A simulation study of artificial neural networks for nonlinear time-series forecasting. Comput Oper Res. 2001;28(4):381–96.CrossRef Zhang GP, Patuwo BE, Hu MYJC, Research O. A simulation study of artificial neural networks for nonlinear time-series forecasting. Comput Oper Res. 2001;28(4):381–96.CrossRef
28.
go back to reference Wang J, Wang J, Fang W, Niu H. Financial time series prediction using Elman recurrent random neural networks. Comput Intell Neurosci. 2016;2016:4742515.PubMedPubMedCentral Wang J, Wang J, Fang W, Niu H. Financial time series prediction using Elman recurrent random neural networks. Comput Intell Neurosci. 2016;2016:4742515.PubMedPubMedCentral
29.
go back to reference Hu JW-S, Hu Y-C, Lin RR-W. Applying neural networks to prices prediction of crude oil futures. Math Probl Eng. 2012;2012:12. Hu JW-S, Hu Y-C, Lin RR-W. Applying neural networks to prices prediction of crude oil futures. Math Probl Eng. 2012;2012:12.
30.
go back to reference Maqsood I, Khan MR, Abraham A: Canadian weather analysis using connectionist learning paradigms. In: Advances in soft computing: 2003; London: Springer London; 2003: 21–32.CrossRef Maqsood I, Khan MR, Abraham A: Canadian weather analysis using connectionist learning paradigms. In: Advances in soft computing: 2003; London: Springer London; 2003: 21–32.CrossRef
31.
go back to reference Wang H, Gao Y, Xu Z, Xu W. Elman's recurrent neural network applied to forecasting the quality of water diversion in the water source of Lake Taihu, vol. 11; 2011. Wang H, Gao Y, Xu Z, Xu W. Elman's recurrent neural network applied to forecasting the quality of water diversion in the water source of Lake Taihu, vol. 11; 2011.
32.
go back to reference More A, Deo MC. Forecasting wind with neural networks. Mar Struct. 2003;16(1):35–49.CrossRef More A, Deo MC. Forecasting wind with neural networks. Mar Struct. 2003;16(1):35–49.CrossRef
33.
go back to reference Arnerić J, Poklepović T, Aljinović ZJCORR. GARCH based artificial neural networks in forecasting conditional variance of stock returns. Croat Oper Res Rev. 2014;5(2):329–43.CrossRef Arnerić J, Poklepović T, Aljinović ZJCORR. GARCH based artificial neural networks in forecasting conditional variance of stock returns. Croat Oper Res Rev. 2014;5(2):329–43.CrossRef
Metadata
Title
Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks
Authors
Wei Wu
Shu-Yi An
Peng Guan
De-Sheng Huang
Bao-Sen Zhou
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4028-x

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.