Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Tick | Research article

Identification of bio-climatic determinants and potential risk areas for Kyasanur forest disease in Southern India using MaxEnt modelling approach

Authors: Malay Pramanik, Poonam Singh, Ramesh C. Dhiman

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Kyasanur forest disease (KFD), known as monkey fever, was for the first time reported in 1957 from the Shivamogga district of Karnataka. But since 2011, it has been spreading to the neighbouring state of Kerala, Goa, Maharashtra, and Tamil Nadu. The disease is transmitted to humans, monkeys and by the infected bite of ticks Haemaphysalis spinigera. It is known that deforestation and ecological changes are the main reasons for KFD emergence, but the bio-climatic understanding and emerging pathways remain unknown.

Methods

The present study aims to understand the bio-climatic determinants of distribution of tick vector of KFD in southern India using the Maximum Entropy (MaxEnt) model. The analysis was done using 34 locations of Haemaphysalis spinigera occurrence and nineteen bio-climatic variables from WorldClim. Climatic variables contribution was assessed using the Jackknife test and mean AUC 0.859, indicating the model performs with very high accuracy.

Results

Most influential variables affecting the spatial distribution of Haemaphysalis spinigera were the average temperature of the warmest quarter (bio10, contributed 32.5%), average diurnal temperature range (bio2, contributed 21%), precipitation of wettest period (bio13, contributed 17.6%), and annual precipitation (bio12, contributed 11.1%). The highest probability of Haemaphysalis spinigera presence was found when the mean warmest quarter temperature ranged between 25.4 and 30 °C. The risk of availability of the tick increased noticeably when the mean diurnal temperature ranged between 8 and 10 °C. The tick also preferred habitat having an annual mean temperature (bio1) between 23 and 26.2 °C, mean temperature of the driest quarter (bio9) between 20 and 28 °C, and mean temperature of the wettest quarter (bio8) between 22.5 and 25 °C.

Conclusions

The results have established the relationship between bioclimatic variables and KFD tick distribution and mapped the potential areas for KFD in adjacent areas wherein surveillance for the disease is warranted for early preparedness before the occurrence of outbreaks etc. The modelling approach helps link bio-climatic variables with the present and predicted distribution of Haemaphysalis spinigera tick.
Appendix
Available only for authorised users
Literature
1.
go back to reference Work TH. Virological epidemiology of the 1958 epidemic of Kyasanur forest disease. Am J Public Health Nations Health. 1959;49(7):869–74.PubMedPubMedCentral Work TH. Virological epidemiology of the 1958 epidemic of Kyasanur forest disease. Am J Public Health Nations Health. 1959;49(7):869–74.PubMedPubMedCentral
2.
go back to reference Singh KR, Pavri K, Anderson CR. Experimental transovarial transmission of Kyasanur forest disease virus in Haemaphysalis spinigera. Nature. 1963;199:513.PubMed Singh KR, Pavri K, Anderson CR. Experimental transovarial transmission of Kyasanur forest disease virus in Haemaphysalis spinigera. Nature. 1963;199:513.PubMed
3.
go back to reference Boshell MJ. Isolation of Kyasnur forest disease virus from Ixodid ticks: 1961–1964. Indian J Med Res. 1968;56(4):541–68.PubMed Boshell MJ. Isolation of Kyasnur forest disease virus from Ixodid ticks: 1961–1964. Indian J Med Res. 1968;56(4):541–68.PubMed
4.
go back to reference Yadav PD, Patil DY, Sandhya VK, Prakash KS, Surgihalli R, Mourya DT. Outbreak of Kyasanur Forest disease in Thirthahalli, Karnataka, India. Int J Infect Dis. 2014;26:132–4.PubMed Yadav PD, Patil DY, Sandhya VK, Prakash KS, Surgihalli R, Mourya DT. Outbreak of Kyasanur Forest disease in Thirthahalli, Karnataka, India. Int J Infect Dis. 2014;26:132–4.PubMed
5.
go back to reference Banerjee K, Bhatt HR. Kyasanur forest disease. In: Mishra A, Polasa H, editors. Virus ecology. New Delhi: South Asian Publisher; 1984. p. 123–38. Banerjee K, Bhatt HR. Kyasanur forest disease. In: Mishra A, Polasa H, editors. Virus ecology. New Delhi: South Asian Publisher; 1984. p. 123–38.
6.
go back to reference Banerjee K. Kyasanur Forest disease. In: Monath TP, editor. Arboviruses: epidemiology and ecology. Boca Raton (FL): CRC Press; 1990. p. 93–116. Banerjee K. Kyasanur Forest disease. In: Monath TP, editor. Arboviruses: epidemiology and ecology. Boca Raton (FL): CRC Press; 1990. p. 93–116.
7.
go back to reference Bhatt PN, Work TH, Varma MG, Trapido H, Murthy DP, Rodrigues FM. Kyasanur forest diseases. IV. Isolation of Kyasanur forest disease virus from infected humans and monkeys of Shivamogga district Mysore state. Indian J Med Sci. 1966;20:316–20.PubMed Bhatt PN, Work TH, Varma MG, Trapido H, Murthy DP, Rodrigues FM. Kyasanur forest diseases. IV. Isolation of Kyasanur forest disease virus from infected humans and monkeys of Shivamogga district Mysore state. Indian J Med Sci. 1966;20:316–20.PubMed
8.
go back to reference Pattnaik P. Kyasanur forest disease: an epidemiological view in India. Rev Med Virol. 2006;16:151–65.PubMed Pattnaik P. Kyasanur forest disease: an epidemiological view in India. Rev Med Virol. 2006;16:151–65.PubMed
9.
go back to reference Trapido H. Kyasanur Forest disease. VIII. Isolation of Kyasanur Forest disease virus from naturally infected ticks of the genus Haemaphysalis. Indian J Med Res. 1959;47:133–8.PubMed Trapido H. Kyasanur Forest disease. VIII. Isolation of Kyasanur Forest disease virus from naturally infected ticks of the genus Haemaphysalis. Indian J Med Res. 1959;47:133–8.PubMed
10.
go back to reference Verma MG, Webb HE, Pavri KM. Studies on the transmission of Kyasanur Forest disease virus by Haemaphysalis spinigera Newman. Transfusion (Paris). 1960;54:509–16. Verma MG, Webb HE, Pavri KM. Studies on the transmission of Kyasanur Forest disease virus by Haemaphysalis spinigera Newman. Transfusion (Paris). 1960;54:509–16.
11.
go back to reference Singh KRP, Pavri K. Survival of Kyasanur forest disease virus in infected ticks, Haemaphysalis spinigera, after feeding on immune rabbits. Indian J Med Res. 1965;53(9):827–30.PubMed Singh KRP, Pavri K. Survival of Kyasanur forest disease virus in infected ticks, Haemaphysalis spinigera, after feeding on immune rabbits. Indian J Med Res. 1965;53(9):827–30.PubMed
12.
go back to reference Sreenivasan MA, Bhat HR, Rajagopalan PK. The epizootics of Kyasanur Forest disease in wild monkeys during 1964 to 1973. Trans R Soc Trop Med Hyg. 1986;80:810–4.PubMed Sreenivasan MA, Bhat HR, Rajagopalan PK. The epizootics of Kyasanur Forest disease in wild monkeys during 1964 to 1973. Trans R Soc Trop Med Hyg. 1986;80:810–4.PubMed
13.
go back to reference Work TH, Roderiguez FM, Bhatt PN. Virological epidemiology of the 1958 epidemic of Kyasanur Forest disease. Am J Public Health Nations Health. 1959;49:869–74.PubMedPubMedCentral Work TH, Roderiguez FM, Bhatt PN. Virological epidemiology of the 1958 epidemic of Kyasanur Forest disease. Am J Public Health Nations Health. 1959;49:869–74.PubMedPubMedCentral
14.
go back to reference Ajesh K, Nagaraja BK, Sreejith K. Kyasanur forest disease virus breaking the endemic barrier: an investigation into ecological effects on disease emergence and future-outlook. Zoonoses Public Health. 2017;64(7):73–80. Ajesh K, Nagaraja BK, Sreejith K. Kyasanur forest disease virus breaking the endemic barrier: an investigation into ecological effects on disease emergence and future-outlook. Zoonoses Public Health. 2017;64(7):73–80.
15.
go back to reference Nichter M. Kyasanur forest disease: an ethnography of a disease of development. Med Anthropol Q. 1987;1(4):406–23. Nichter M. Kyasanur forest disease: an ethnography of a disease of development. Med Anthropol Q. 1987;1(4):406–23.
16.
go back to reference John JK, Kattoor JJ, Nair AR, Bharathan AP, Valsala R, Sadanandan GV. Kyasanur forest disease: a status update. Adv Anim Vet Sci. 2014;2:329–36. John JK, Kattoor JJ, Nair AR, Bharathan AP, Valsala R, Sadanandan GV. Kyasanur forest disease: a status update. Adv Anim Vet Sci. 2014;2:329–36.
17.
go back to reference Rajagopalan PK, Patil AP, Boshell J. Studies on the ixodid tick populations on the forest floor in the Kyasanur forest disease area. Indian J Med Res. 1968;56:497–509.PubMed Rajagopalan PK, Patil AP, Boshell J. Studies on the ixodid tick populations on the forest floor in the Kyasanur forest disease area. Indian J Med Res. 1968;56:497–509.PubMed
18.
go back to reference Rajagopalan PK, Patil AP, Boshell J. Ixodid ticks on their mammalian hosts in the Kyasanur forest disease area of Mysore State, India. Indian J Med Res. 1968;56(510):525. Rajagopalan PK, Patil AP, Boshell J. Ixodid ticks on their mammalian hosts in the Kyasanur forest disease area of Mysore State, India. Indian J Med Res. 1968;56(510):525.
19.
go back to reference Work TH, Trapido H. Summary of preliminary report of investigations of the virus research centre on an epidemic disease affecting forest villagers and wild monkeys in Shimoga district, Mysore. Indian J Med Sci. 1957;11:340–1. Work TH, Trapido H. Summary of preliminary report of investigations of the virus research centre on an epidemic disease affecting forest villagers and wild monkeys in Shimoga district, Mysore. Indian J Med Sci. 1957;11:340–1.
20.
go back to reference Kasabi GS, Murhekar MV, Yadav PD, Raghunandan R, Kiran SK, Sandhya VK, Mehendale SM. Kyasanur Forest disease, India, 2011–2012. Emerg Infect Dis. 2013;19:278–81.PubMedPubMedCentral Kasabi GS, Murhekar MV, Yadav PD, Raghunandan R, Kiran SK, Sandhya VK, Mehendale SM. Kyasanur Forest disease, India, 2011–2012. Emerg Infect Dis. 2013;19:278–81.PubMedPubMedCentral
21.
go back to reference Mourya DT, Yadav PD, Patil DY. Highly infectious tick-borne viral diseases: Kyasanur forest disease and crimean-congo haemorrhagic fever in India. WHO South-East Asia J Public Health. 2014;3:8–21.PubMed Mourya DT, Yadav PD, Patil DY. Highly infectious tick-borne viral diseases: Kyasanur forest disease and crimean-congo haemorrhagic fever in India. WHO South-East Asia J Public Health. 2014;3:8–21.PubMed
22.
go back to reference Mourya DT, Yadav PD, Sandhya VK, Reddy S. Spread of Kyasanur forest disease, Bandipur tiger reserve, India, 2012–2013. Emerg Infect Dis. 2013;19:1540–1.PubMedPubMedCentral Mourya DT, Yadav PD, Sandhya VK, Reddy S. Spread of Kyasanur forest disease, Bandipur tiger reserve, India, 2012–2013. Emerg Infect Dis. 2013;19:1540–1.PubMedPubMedCentral
23.
go back to reference Tandale BV, Balakrishnan A, Yadav PD, Marja N, Mourya DT. New focus of Kyasanur forest disease virus activity in a tribal area in Kerala, India. Infect Dis Poverty. 2015;4:12.PubMedPubMedCentral Tandale BV, Balakrishnan A, Yadav PD, Marja N, Mourya DT. New focus of Kyasanur forest disease virus activity in a tribal area in Kerala, India. Infect Dis Poverty. 2015;4:12.PubMedPubMedCentral
24.
go back to reference Phillips SJ, Dudik M, and Schapire RE. A maximum entropy approach to species distribution modelling. In: Proceedings of the 21st international conference on machine learning. 2004. Phillips SJ, Dudik M, and Schapire RE. A maximum entropy approach to species distribution modelling. In: Proceedings of the 21st international conference on machine learning. 2004.
25.
go back to reference Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. MaxEnt modelling for predicting the potential distribution of medicinal plant Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng. 2013;51:83–7. Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. MaxEnt modelling for predicting the potential distribution of medicinal plant Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng. 2013;51:83–7.
26.
go back to reference Arnould JPY, Monk J, Ierodiaconou D, Hindell MA, Semmens J, Hoskins AJ, et al. Use of anthropogenic seafloor structures by Australian fur seals: potential positive ecological impacts of marine industrial development? PLoS ONE. 2015;10:e0130581.PubMedPubMedCentral Arnould JPY, Monk J, Ierodiaconou D, Hindell MA, Semmens J, Hoskins AJ, et al. Use of anthropogenic seafloor structures by Australian fur seals: potential positive ecological impacts of marine industrial development? PLoS ONE. 2015;10:e0130581.PubMedPubMedCentral
27.
go back to reference Manyangadze T, Chimbari MJ, Gebreslasie M, Ceccato P, Mukaratirwa S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasit Vectors. 2016;9:572.PubMedPubMedCentral Manyangadze T, Chimbari MJ, Gebreslasie M, Ceccato P, Mukaratirwa S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasit Vectors. 2016;9:572.PubMedPubMedCentral
28.
go back to reference Gao X, Wang H, Wang H, Qin H, Xiao J. Land use and soil contamination with Toxoplasma gondii oocysts in urban areas. Sci Total Environ. 2016;568:1086–91.PubMed Gao X, Wang H, Wang H, Qin H, Xiao J. Land use and soil contamination with Toxoplasma gondii oocysts in urban areas. Sci Total Environ. 2016;568:1086–91.PubMed
29.
go back to reference Chikerema SM, Murwira A, Matope G, Pfukenyi DM. Spatial modelling of Bacillus anthracis ecological niche in Zimbabwe. Prev Vet Med. 2013;111:25–30.PubMed Chikerema SM, Murwira A, Matope G, Pfukenyi DM. Spatial modelling of Bacillus anthracis ecological niche in Zimbabwe. Prev Vet Med. 2013;111:25–30.PubMed
30.
go back to reference Wang L, Hu W, Soares Magalhaes RJ, Bi P, Ding F, Sun H, et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ Int. 2014;73:1–9.PubMed Wang L, Hu W, Soares Magalhaes RJ, Bi P, Ding F, Sun H, et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ Int. 2014;73:1–9.PubMed
31.
go back to reference Ren Z, Wang D, Ma A, et al. Predicting malaria vector distribution under climate changes scenarios China: challenges for malaria elimination. Sci Rep. 2016;6:20604.PubMedPubMedCentral Ren Z, Wang D, Ma A, et al. Predicting malaria vector distribution under climate changes scenarios China: challenges for malaria elimination. Sci Rep. 2016;6:20604.PubMedPubMedCentral
32.
go back to reference Gao X, Xiao JH, Liu BY, Wang HB. Impact of meteorological and geographical factors on the distribution of Phlebotomus chinensis in northwestern mainland China. Med Vet Entomol. 2018;32:365–71.PubMed Gao X, Xiao JH, Liu BY, Wang HB. Impact of meteorological and geographical factors on the distribution of Phlebotomus chinensis in northwestern mainland China. Med Vet Entomol. 2018;32:365–71.PubMed
33.
go back to reference Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H. Modelling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci Total Environ. 2019;664:203–14.PubMed Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H. Modelling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci Total Environ. 2019;664:203–14.PubMed
34.
go back to reference Conley AK, Fuller DO, Haddad N, Hassan AN, Gad AM, Beier JC. Modelling the distribution of the West Nile and Rift Valley fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasit Vectors. 2014;7:289.PubMedPubMedCentral Conley AK, Fuller DO, Haddad N, Hassan AN, Gad AM, Beier JC. Modelling the distribution of the West Nile and Rift Valley fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasit Vectors. 2014;7:289.PubMedPubMedCentral
35.
go back to reference Miller RH, Masuoka P, Klein TA, Kim HC, Somer T, Grieco J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl Trop Dis. 2012;6:119–21. Miller RH, Masuoka P, Klein TA, Kim HC, Somer T, Grieco J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl Trop Dis. 2012;6:119–21.
36.
go back to reference Pramanik M, Paudel U, Mondal B, Chakraborti S, Deb P. Predicting climate change impacts on the distribution of the threatened Garcinia Indica in the Western Ghats, India. Clim Risk Manage. 2018;19:94–15. Pramanik M, Paudel U, Mondal B, Chakraborti S, Deb P. Predicting climate change impacts on the distribution of the threatened Garcinia Indica in the Western Ghats, India. Clim Risk Manage. 2018;19:94–15.
37.
go back to reference Sallam MF, Xue RD, Pereira RM, Koehler PG. Ecological niche modeling of mosquito vectors of West Nile virus in St. John’s County, Florida, USA. Parasit Vectors. 2016;9:371.PubMedPubMedCentral Sallam MF, Xue RD, Pereira RM, Koehler PG. Ecological niche modeling of mosquito vectors of West Nile virus in St. John’s County, Florida, USA. Parasit Vectors. 2016;9:371.PubMedPubMedCentral
38.
go back to reference Messina JP, Moore NJ, DeVisser MH, McCord PF, Walker ED. Climate change and risk projection: dynamic spatial models of Tsetse and African Trypanosomiasis in Kenya. Ann Assoc Am Geogr. 2012;102(5):1038–48.PubMedPubMedCentral Messina JP, Moore NJ, DeVisser MH, McCord PF, Walker ED. Climate change and risk projection: dynamic spatial models of Tsetse and African Trypanosomiasis in Kenya. Ann Assoc Am Geogr. 2012;102(5):1038–48.PubMedPubMedCentral
39.
go back to reference Thompson I, Mackey B, McNulty S, Mosseler A. A Synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Forest resilience, biodiversity, and climate change. Secretariat of the Convention on Biological Diversity, Montreal. Technical series 2009;43:67. Thompson I, Mackey B, McNulty S, Mosseler A. A Synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Forest resilience, biodiversity, and climate change. Secretariat of the Convention on Biological Diversity, Montreal. Technical series 2009;43:67.
40.
go back to reference Hijmans RJ, Graham CH. A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr. 2006;15:578–87. Hijmans RJ, Graham CH. A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr. 2006;15:578–87.
41.
go back to reference Loiseau C, Harrigan RJ, Bichet C, et al. Predictions of avian Plasmodium expansion under climate change. Sci Rep. 2013;3:1126.PubMedPubMedCentral Loiseau C, Harrigan RJ, Bichet C, et al. Predictions of avian Plasmodium expansion under climate change. Sci Rep. 2013;3:1126.PubMedPubMedCentral
42.
go back to reference Remya K, Ramachandran A, Jayakumar S. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn, using MaxEnt model in the Eastern Ghats, India. Ecol Eng. 2015;82:184–8. Remya K, Ramachandran A, Jayakumar S. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn, using MaxEnt model in the Eastern Ghats, India. Ecol Eng. 2015;82:184–8.
43.
go back to reference Peterson AT, Papes M, Eaton M. Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography. 2007;30:550–60. Peterson AT, Papes M, Eaton M. Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography. 2007;30:550–60.
44.
go back to reference Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of Maxent for ecologists. Divers Distrib. 2011;17:43–57. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of Maxent for ecologists. Divers Distrib. 2011;17:43–57.
45.
go back to reference Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106:620–30. Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106:620–30.
46.
go back to reference Anderson RP, Raza A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution, preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr. 2010;37:1378–93. Anderson RP, Raza A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution, preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr. 2010;37:1378–93.
47.
go back to reference Rospleszcz S, Janitza S, Boulesteix AL. The effects of bootstrapping on model selection for multiple regression. Technical Report 164. 2014, Department of Statistics, University of Munich. Rospleszcz S, Janitza S, Boulesteix AL. The effects of bootstrapping on model selection for multiple regression. Technical Report 164. 2014, Department of Statistics, University of Munich.
48.
go back to reference Phillips SJ, Dudík M. Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–75. Phillips SJ, Dudík M. Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–75.
49.
go back to reference Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006;43(6):1223–32. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006;43(6):1223–32.
50.
go back to reference Liu C, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr. 2013;40(4):778–89. Liu C, White M, Newell G. Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr. 2013;40(4):778–89.
51.
go back to reference Bosso L, Smeraldo S, Rapuzzi P, Sama G, Garonna AP, Russo D. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpine (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol Entomol. 2018;43(2):192–203. Bosso L, Smeraldo S, Rapuzzi P, Sama G, Garonna AP, Russo D. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpine (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol Entomol. 2018;43(2):192–203.
52.
go back to reference Smeraldo S, Di Febbraro M, Ciroviic D, Bosso L, Trbojeviic I, Russo D. Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fibre). J Nat Conserv. 2017;37:12–20. Smeraldo S, Di Febbraro M, Ciroviic D, Bosso L, Trbojeviic I, Russo D. Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fibre). J Nat Conserv. 2017;37:12–20.
53.
go back to reference Brown JL, Bennett JR, French CM. SDMtoolbox2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J. 2017;5:e4095.PubMedPubMedCentral Brown JL, Bennett JR, French CM. SDMtoolbox2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J. 2017;5:e4095.PubMedPubMedCentral
54.
go back to reference Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 1997;24:38–49. Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 1997;24:38–49.
55.
go back to reference Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M. Niche-based modelling as a tool for predicting the global risk of alien plant invasions at a global scale. Glob Change Biol. 2005;11:2234–50. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M. Niche-based modelling as a tool for predicting the global risk of alien plant invasions at a global scale. Glob Change Biol. 2005;11:2234–50.
56.
go back to reference Cumming GS. Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology. 2002;83:255–68. Cumming GS. Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology. 2002;83:255–68.
57.
go back to reference Danielova V, Rudenko N, Daniel M, Holubova J, Materna J, Golovchenko M, Schwarzova L. Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol. 2006;296(Suppl. 40):48–53.PubMed Danielova V, Rudenko N, Daniel M, Holubova J, Materna J, Golovchenko M, Schwarzova L. Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol. 2006;296(Suppl. 40):48–53.PubMed
58.
go back to reference Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108:119–23.PubMedPubMedCentral Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108:119–23.PubMedPubMedCentral
59.
go back to reference Beard CB, Eisen RJ, Barker CM, Garofalo JF, et al. Chapter 5: Vector-borne diseases. In: The impacts of climate change on human health in the United States: a scientific assessment. U.S. Global Change Research Program. 2012. Beard CB, Eisen RJ, Barker CM, Garofalo JF, et al. Chapter 5: Vector-borne diseases. In: The impacts of climate change on human health in the United States: a scientific assessment. U.S. Global Change Research Program. 2012.
60.
go back to reference Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH. Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol. 2012;49(2):457–64. Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH. Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol. 2012;49(2):457–64.
61.
go back to reference Mehla R, Kumar SR, Yadav P, Barde PV, Yergolkar PN, Erickson BR. Recent ancestry of Kyasanur Forest disease virus. Emerg Infect Dis. 2009;15:1431–7.PubMedPubMedCentral Mehla R, Kumar SR, Yadav P, Barde PV, Yergolkar PN, Erickson BR. Recent ancestry of Kyasanur Forest disease virus. Emerg Infect Dis. 2009;15:1431–7.PubMedPubMedCentral
62.
go back to reference Prasad VK, Badarinath KVS, Eaturu A. Effect of precipitation, temperature, and topographic parameters on evergreen vegetation greenery in the Western Ghats, India. Int J Climatol. 2008;28:1807–19. Prasad VK, Badarinath KVS, Eaturu A. Effect of precipitation, temperature, and topographic parameters on evergreen vegetation greenery in the Western Ghats, India. Int J Climatol. 2008;28:1807–19.
63.
go back to reference Krishna Kumar KN, Rao GP, Gopakumar CS. Rainfall trends in the twentieth century over Kerala, India. Atmos Environ. 2009;43(11):1940–4. Krishna Kumar KN, Rao GP, Gopakumar CS. Rainfall trends in the twentieth century over Kerala, India. Atmos Environ. 2009;43(11):1940–4.
64.
go back to reference Subash N, Sikka AK. Trend analysis of rainfall and temperature and its relationship over India. Theoret Appl Climatol. 2014;117(3–4):449–62. Subash N, Sikka AK. Trend analysis of rainfall and temperature and its relationship over India. Theoret Appl Climatol. 2014;117(3–4):449–62.
65.
go back to reference Raj PPN, Azeez PA. Changing rainfall in the Palakkad plains of South India. Atmosfera. 2010;23:75–82. Raj PPN, Azeez PA. Changing rainfall in the Palakkad plains of South India. Atmosfera. 2010;23:75–82.
66.
go back to reference Nair VS, Babu SS, Moorthy KK, Prijith SS. Spatial gradients in aerosol-induced atmospheric heating and surface dimming over the oceanic regions around India: anthropogenic or natural? J Clim. 2013;26(19):7611–21. Nair VS, Babu SS, Moorthy KK, Prijith SS. Spatial gradients in aerosol-induced atmospheric heating and surface dimming over the oceanic regions around India: anthropogenic or natural? J Clim. 2013;26(19):7611–21.
67.
go back to reference Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;1:66–77. Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;1:66–77.
69.
go back to reference Walsh MG, Bhat R, Nagarajan-Radha V, Narayanan P, Vyas N, Sawleshwarkar S, Mukhopadhyay C. Low mammalian species richness is associated with Kyasanur Forest disease outbreak risk in deforested landscapes in the Western Ghats. India One Health. 2021;13:100299.PubMed Walsh MG, Bhat R, Nagarajan-Radha V, Narayanan P, Vyas N, Sawleshwarkar S, Mukhopadhyay C. Low mammalian species richness is associated with Kyasanur Forest disease outbreak risk in deforested landscapes in the Western Ghats. India One Health. 2021;13:100299.PubMed
Metadata
Title
Identification of bio-climatic determinants and potential risk areas for Kyasanur forest disease in Southern India using MaxEnt modelling approach
Authors
Malay Pramanik
Poonam Singh
Ramesh C. Dhiman
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06908-9

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.