Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2018

01-10-2018 | Epidemiology

Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study

Authors: K. J. Jerzak, J. G. Cockburn, S. K. Dhesy-Thind, G. R. Pond, K. I. Pritchard, S. Nofech-Mozes, P. Sun, S. A. Narod, A. Bane

Published in: Breast Cancer Research and Treatment | Issue 3/2018

Login to get access

Abstract

Purpose

Preliminary data suggest that high expression of the TRβ1 tumor suppressor is associated with longer survival among women with early breast cancer. We undertook this study to validate these findings.

Methods

In this prospective cohort study, we analyzed the prognostic significance of TRβ1 protein expression in the breast tumors of 796 women who had undergone breast surgery in the Henrietta Banting Breast Cancer database. All women were recruited after undergoing primary surgical therapy at Women’s College Hospital (Toronto, ON, Canada) between January 1987 and December 2000. Details regarding patient age at diagnosis, systemic, and local therapies, as well as pathological features of their tumor have been systematically recorded. Clinical outcomes including breast cancer recurrence and death have been updated at least once each year with a median follow-up of 9.6 years (range 0.1–21 years).

Results

High TRβ1 expression (> 4 on the Allred score) was associated with a longer breast cancer-specific survival with a HR 0.45 (95% CI 0.33–0.61), p < 0.0001 in a univariable Cox regression model. This was maintained in a multivariable model adjusted for age, tumor size, nodal status, chemotherapy, hormone therapy, radiotherapy, surgery, and ER status with a HR of 0.61 (95% CI 0.44–0.85), p = 0.004.

Conclusions

High expression of TRβ1 is associated with longer breast cancer-specific survival independent of other prognostic factors. Given that low TRβ expression is associated with chemotherapy resistance in-vitro, TRβ1 may also serve as a predictive biomarker or even a therapeutic target given the availability of TRβ agonists.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aranda A, Martínez-Iglesias O, Ruiz-Llorente L, García-Carpizo V, Zambrano A (2009) Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20(7):318–324CrossRefPubMed Aranda A, Martínez-Iglesias O, Ruiz-Llorente L, García-Carpizo V, Zambrano A (2009) Thyroid receptor: roles in cancer. Trends Endocrinol Metab 20(7):318–324CrossRefPubMed
2.
go back to reference Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142CrossRefPubMed Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142CrossRefPubMed
3.
go back to reference Kim WG, Cheng SY (2013) Thyroid hormone receptors and cancer. Biochim Biophys Acta 1830(7):3928–3936CrossRefPubMed Kim WG, Cheng SY (2013) Thyroid hormone receptors and cancer. Biochim Biophys Acta 1830(7):3928–3936CrossRefPubMed
4.
go back to reference Kim WG, Zhao L, Kim DW, Willingham MC, Cheng SY (2014) Inhibition of tumorigenesis by the thyroid hormone receptor β in xenograft models. Thyroid 24(2):260–269CrossRefPubMedPubMedCentral Kim WG, Zhao L, Kim DW, Willingham MC, Cheng SY (2014) Inhibition of tumorigenesis by the thyroid hormone receptor β in xenograft models. Thyroid 24(2):260–269CrossRefPubMedPubMedCentral
5.
go back to reference Zambrano A, García-Carpizo V, Gallardo ME, Villamuera R, Gómez-Ferrería MA et al (2014) The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol 204(1):129–146CrossRefPubMedPubMedCentral Zambrano A, García-Carpizo V, Gallardo ME, Villamuera R, Gómez-Ferrería MA et al (2014) The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol 204(1):129–146CrossRefPubMedPubMedCentral
6.
go back to reference Park JW, Zhao L, Cheng SY (2013) Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. Am J Cancer Res 3(3):302–311PubMedPubMedCentral Park JW, Zhao L, Cheng SY (2013) Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. Am J Cancer Res 3(3):302–311PubMedPubMedCentral
7.
go back to reference Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL (2017) Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 24(11):R367–R85CrossRef Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL (2017) Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 24(11):R367–R85CrossRef
8.
9.
go back to reference Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60(4):1049–1106CrossRefPubMed Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60(4):1049–1106CrossRefPubMed
10.
go back to reference Vonderhaar BK, Tang E, Lyster RR, Nascimento MC (1986) Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands. Endocrinology 119(2):580–585CrossRefPubMed Vonderhaar BK, Tang E, Lyster RR, Nascimento MC (1986) Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands. Endocrinology 119(2):580–585CrossRefPubMed
11.
go back to reference Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7(1):17–38CrossRefPubMed Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7(1):17–38CrossRefPubMed
12.
go back to reference Schmidt GH, Moger WH (1967) Effect of thyroactive materials upon mammary gland growth and lactation in rats. Endocrinology 81(1):14–18CrossRefPubMed Schmidt GH, Moger WH (1967) Effect of thyroactive materials upon mammary gland growth and lactation in rats. Endocrinology 81(1):14–18CrossRefPubMed
13.
14.
go back to reference Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H et al (2014) Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 20(6):884–904CrossRefPubMed Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H et al (2014) Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 20(6):884–904CrossRefPubMed
15.
go back to reference Darras VM, Houbrechts AM, Van Herck SL (2015) Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim Biophys Acta 1849(2):130–141CrossRefPubMed Darras VM, Houbrechts AM, Van Herck SL (2015) Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim Biophys Acta 1849(2):130–141CrossRefPubMed
16.
go back to reference Bernal J (2005) Pathophysiology of thyroid hormone deficiency during fetal development. J Pediatr Endocrinol Metab 18(Suppl 1):1253–1256PubMed Bernal J (2005) Pathophysiology of thyroid hormone deficiency during fetal development. J Pediatr Endocrinol Metab 18(Suppl 1):1253–1256PubMed
17.
go back to reference Hammes SR, Davis PJ (2015) Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab 29(4):581–593CrossRefPubMedPubMedCentral Hammes SR, Davis PJ (2015) Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab 29(4):581–593CrossRefPubMedPubMedCentral
18.
go back to reference Dinda S, Sanchez A, Moudgil V (2002) Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene 21(5):761–768CrossRefPubMed Dinda S, Sanchez A, Moudgil V (2002) Estrogen-like effects of thyroid hormone on the regulation of tumor suppressor proteins, p53 and retinoblastoma, in breast cancer cells. Oncogene 21(5):761–768CrossRefPubMed
19.
go back to reference Vasudevan N, Koibuchi N, Chin WW, Pfaff DW (2001) Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res Mol Brain Res 95(1–2):9–17CrossRefPubMed Vasudevan N, Koibuchi N, Chin WW, Pfaff DW (2001) Differential crosstalk between estrogen receptor (ER)alpha and ERbeta and the thyroid hormone receptor isoforms results in flexible regulation of the consensus ERE. Brain Res Mol Brain Res 95(1–2):9–17CrossRefPubMed
20.
go back to reference Nogueira CR, Brentani MM (1996) Triiodothyronine mimics the effects of estrogen in breast cancer cell lines. J Steroid Biochem Mol Biol 59(3–4):271–279CrossRefPubMed Nogueira CR, Brentani MM (1996) Triiodothyronine mimics the effects of estrogen in breast cancer cell lines. J Steroid Biochem Mol Biol 59(3–4):271–279CrossRefPubMed
21.
go back to reference González-Sancho JM, García V, Bonilla F, Muñoz A (2003) Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192(2):121–132CrossRefPubMed González-Sancho JM, García V, Bonilla F, Muñoz A (2003) Thyroid hormone receptors/THR genes in human cancer. Cancer Lett 192(2):121–132CrossRefPubMed
22.
go back to reference Perra A, Plateroti M, Columbano A (2016) T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 23(8):R353–R369CrossRef Perra A, Plateroti M, Columbano A (2016) T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 23(8):R353–R369CrossRef
23.
go back to reference Wong MM, Guo C, Zhang J (2014) Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. Am J Clin Exp Urol 2(3):169–187PubMedPubMedCentral Wong MM, Guo C, Zhang J (2014) Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. Am J Clin Exp Urol 2(3):169–187PubMedPubMedCentral
24.
go back to reference Gu G, Gelsomino L, Covington KR, Beyer AR, Wang J et al (2015) Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res Treat 150(3):535–545CrossRefPubMedPubMedCentral Gu G, Gelsomino L, Covington KR, Beyer AR, Wang J et al (2015) Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res Treat 150(3):535–545CrossRefPubMedPubMedCentral
25.
go back to reference Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B et al (2011) A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat 126(2):407–420CrossRefPubMed Sabatier R, Finetti P, Cervera N, Lambaudie E, Esterni B et al (2011) A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat 126(2):407–420CrossRefPubMed
26.
go back to reference Jerzak KJ, Cockburn J, Pond GR, Pritchard KI, Narod SA et al (2015) Thyroid hormone receptor α in breast cancer: prognostic and therapeutic implications. Breast Cancer Res Treat 149(1):293–301CrossRefPubMed Jerzak KJ, Cockburn J, Pond GR, Pritchard KI, Narod SA et al (2015) Thyroid hormone receptor α in breast cancer: prognostic and therapeutic implications. Breast Cancer Res Treat 149(1):293–301CrossRefPubMed
27.
go back to reference Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434CrossRefPubMed Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434CrossRefPubMed
28.
go back to reference Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mol Pathol 11(2):155–168 Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mol Pathol 11(2):155–168
29.
go back to reference Cao HJ, Lin HY, Luidens MK, Davis FB, Davis PJ (2009) Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-beta1 (Trbeta1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr Res 34(1–2):31–42PubMed Cao HJ, Lin HY, Luidens MK, Davis FB, Davis PJ (2009) Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-beta1 (Trbeta1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr Res 34(1–2):31–42PubMed
30.
go back to reference Zhu XG, Hanover JA, Hager GL, Cheng SY (1998) Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem 273:27058–27063CrossRefPubMed Zhu XG, Hanover JA, Hager GL, Cheng SY (1998) Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor green fluorescent protein chimera. J Biol Chem 273:27058–27063CrossRefPubMed
31.
go back to reference Baumann CT, Maruvada P, Hager GL, Yen PM (2001) Nuclear cytoplasmic shuttling by thyroid hormone receptors. Multiple protein interactions are required for nuclear retention. J Biol Chem 276:11237–11245CrossRefPubMed Baumann CT, Maruvada P, Hager GL, Yen PM (2001) Nuclear cytoplasmic shuttling by thyroid hormone receptors. Multiple protein interactions are required for nuclear retention. J Biol Chem 276:11237–11245CrossRefPubMed
32.
go back to reference David PJ, Davis FB, Lin HY (2008) Promotion by thyroid hormone of cytoplasm-to-nucleus shuttling of thyroid hormone receptors. Steroids 73(9–10):1013–1017 David PJ, Davis FB, Lin HY (2008) Promotion by thyroid hormone of cytoplasm-to-nucleus shuttling of thyroid hormone receptors. Steroids 73(9–10):1013–1017
33.
go back to reference Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F et al (2009) Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 69:501–509CrossRefPubMed Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F et al (2009) Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 69:501–509CrossRefPubMed
34.
go back to reference Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E et al (2013) Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 154(1):25–35CrossRefPubMed Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E et al (2013) Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 154(1):25–35CrossRefPubMed
35.
go back to reference Guigon CJ, Kim DW, Willingham MC, Cheng SY (2011) Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors. Oncogene 30(30):3381–3390CrossRefPubMedPubMedCentral Guigon CJ, Kim DW, Willingham MC, Cheng SY (2011) Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors. Oncogene 30(30):3381–3390CrossRefPubMedPubMedCentral
36.
go back to reference Park JW, Zhao L, Webb P, Cheng SY (2014) Src-dependent phosphorylation at Y406 on the thyroid hormone receptor β confers the tumor suppressor activity. Oncotarget 5(20):10002–10016CrossRefPubMedPubMedCentral Park JW, Zhao L, Webb P, Cheng SY (2014) Src-dependent phosphorylation at Y406 on the thyroid hormone receptor β confers the tumor suppressor activity. Oncotarget 5(20):10002–10016CrossRefPubMedPubMedCentral
37.
go back to reference Ling Y, Ling X, Fan L, Wang Y, Li Q (2015) Mutation analysis underlying the downregulation of the thyroid hormone receptor β1 gene in the Chinese breast cancer population. Onco Targets Ther 8:2967–2972PubMedPubMedCentral Ling Y, Ling X, Fan L, Wang Y, Li Q (2015) Mutation analysis underlying the downregulation of the thyroid hormone receptor β1 gene in the Chinese breast cancer population. Onco Targets Ther 8:2967–2972PubMedPubMedCentral
38.
go back to reference Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC et al (2002) Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res 62:1939–1943PubMed Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC et al (2002) Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res 62:1939–1943PubMed
39.
go back to reference Silva JM, Dominguez G, Gonzalez-Sancho JM, Garcia JM, Silva J et al (2002) Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 21:4307–4316CrossRefPubMed Silva JM, Dominguez G, Gonzalez-Sancho JM, Garcia JM, Silva J et al (2002) Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene 21:4307–4316CrossRefPubMed
40.
go back to reference Ling Y, Xu X, Hao J, Ling X, Du X et al (2010) Aberrant methylation of the THRB gene in tissue and plasma of breast cancer patients. Cancer Genet Cytogenet 196:140–145CrossRefPubMed Ling Y, Xu X, Hao J, Ling X, Du X et al (2010) Aberrant methylation of the THRB gene in tissue and plasma of breast cancer patients. Cancer Genet Cytogenet 196:140–145CrossRefPubMed
41.
go back to reference Ruiz-Llorente L, Ardila-González S, Fanjul LF, Martínez-Iglesias O, Aranda A (2014) microRNAs 424 and 503 are mediators of the anti-proliferative and anti-invasive action of the thyroid hormone receptor beta. Oncotarget 5(10):2918–2933CrossRefPubMedPubMedCentral Ruiz-Llorente L, Ardila-González S, Fanjul LF, Martínez-Iglesias O, Aranda A (2014) microRNAs 424 and 503 are mediators of the anti-proliferative and anti-invasive action of the thyroid hormone receptor beta. Oncotarget 5(10):2918–2933CrossRefPubMedPubMedCentral
44.
go back to reference Ditsch N, Liebhardt S, Von Koch F, Lenhard M, Vogeser M et al (2010) Thyroid function in breast cancer patients. Anticancer Res 30:1713–1717PubMed Ditsch N, Liebhardt S, Von Koch F, Lenhard M, Vogeser M et al (2010) Thyroid function in breast cancer patients. Anticancer Res 30:1713–1717PubMed
45.
go back to reference Heublein S, Mayr D, Meindl A, Angele M, Gallwas J et al (2015) Thyroid hormone receptors predict prognosis in BRCA1 associated breast cancer in opposing ways. PLoS ONE 10(6):e0127072CrossRefPubMedPubMedCentral Heublein S, Mayr D, Meindl A, Angele M, Gallwas J et al (2015) Thyroid hormone receptors predict prognosis in BRCA1 associated breast cancer in opposing ways. PLoS ONE 10(6):e0127072CrossRefPubMedPubMedCentral
46.
go back to reference Davis PJ, Leonard JL, Kin HY (2018) Molecular basis of nongenomic actions of thyroid hormone. Steroids 106:67–96 Davis PJ, Leonard JL, Kin HY (2018) Molecular basis of nongenomic actions of thyroid hormone. Steroids 106:67–96
47.
go back to reference Davis PJ, Lin HY, Tang HY, Davis FB, Mousa SA (2013) Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 23(12):1503–1509CrossRefPubMed Davis PJ, Lin HY, Tang HY, Davis FB, Mousa SA (2013) Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 23(12):1503–1509CrossRefPubMed
48.
go back to reference Cao X, Kambe F, Yamauchi M, Seo H (2009) Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem J 424(2):201–209CrossRefPubMed Cao X, Kambe F, Yamauchi M, Seo H (2009) Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem J 424(2):201–209CrossRefPubMed
49.
go back to reference Moeller LC, Cao X, Dumitrescu AM, Seo H, Refetoff S (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020PubMedPubMedCentralCrossRef Moeller LC, Cao X, Dumitrescu AM, Seo H, Refetoff S (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020PubMedPubMedCentralCrossRef
50.
go back to reference Zhu L, Tian G, Yang Q, De G, Zhang Z et al (2016) Thyroid hormone receptor β1 suppresses proliferation and migration by inhibiting PI3K/Akt signaling in human colorectal cancer cells. Oncol Rep 36(3):1419–1426CrossRefPubMed Zhu L, Tian G, Yang Q, De G, Zhang Z et al (2016) Thyroid hormone receptor β1 suppresses proliferation and migration by inhibiting PI3K/Akt signaling in human colorectal cancer cells. Oncol Rep 36(3):1419–1426CrossRefPubMed
51.
go back to reference Moeller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19(12):2955–2963CrossRefPubMed Moeller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19(12):2955–2963CrossRefPubMed
52.
go back to reference Lin HY, Zhang S, West BL, Tang HY, Passaretti T et al (2003) Identification of the putative MAP kinase docking site in the thyroid hormone receptor-beta1 DNA-binding domain: functional consequences of mutations at the docking site. Biochemistry 42(24):7571–7579CrossRefPubMed Lin HY, Zhang S, West BL, Tang HY, Passaretti T et al (2003) Identification of the putative MAP kinase docking site in the thyroid hormone receptor-beta1 DNA-binding domain: functional consequences of mutations at the docking site. Biochemistry 42(24):7571–7579CrossRefPubMed
53.
go back to reference Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB (2000) Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275(48):38032–38039CrossRefPubMed Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB (2000) Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 275(48):38032–38039CrossRefPubMed
54.
go back to reference Kim DW, Zhao L, Hanover K, Willingham M, Cheng SY (2012) Thyroid hormone receptor beta suppresses SV40-mediated tumorigenesis via novel nongenomic actions. Am J Cancer Res 2(5):606–619PubMedPubMedCentral Kim DW, Zhao L, Hanover K, Willingham M, Cheng SY (2012) Thyroid hormone receptor beta suppresses SV40-mediated tumorigenesis via novel nongenomic actions. Am J Cancer Res 2(5):606–619PubMedPubMedCentral
55.
go back to reference Hsieh MT, Wang LM, Changou CA, Chin YT, Yang YSH et al (2017) Crosstalk between integrin αvβ3 and ERα contributes to thyroid hormone-induced proliferation of ovarian cancer cells. Oncotarget 8(15):24237–24249CrossRefPubMed Hsieh MT, Wang LM, Changou CA, Chin YT, Yang YSH et al (2017) Crosstalk between integrin αvβ3 and ERα contributes to thyroid hormone-induced proliferation of ovarian cancer cells. Oncotarget 8(15):24237–24249CrossRefPubMed
Metadata
Title
Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study
Authors
K. J. Jerzak
J. G. Cockburn
S. K. Dhesy-Thind
G. R. Pond
K. I. Pritchard
S. Nofech-Mozes
P. Sun
S. A. Narod
A. Bane
Publication date
01-10-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-018-4844-5

Other articles of this Issue 3/2018

Breast Cancer Research and Treatment 3/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine