Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2018

01-09-2018

Thrombospondin-1 interactions regulate eicosanoid metabolism and signaling in cancer-related inflammation

Authors: Manuel U. Ramirez, Elizabeth R. Stirling, Nancy J. Emenaker, David D. Roberts, David R. Soto-Pantoja

Published in: Cancer and Metastasis Reviews | Issue 2-3/2018

Login to get access

Abstract

The metabolism of arachidonic acid and other polyunsaturated fatty acids produces eicosanoids, a family of biologically active lipids that are implicated in homeostasis and in several pathologies that involve inflammation. Inflammatory processes mediated by eicosanoids promote carcinogenesis by exerting direct effects on cancer cells and by affecting the tumor microenvironment. Therefore, understanding how eicosanoids mediate cancer progression may lead to better approaches and chemopreventive strategies for the treatment of cancer. The matricellular protein thrombospondin-1 is involved in processes that profoundly regulate inflammatory pathways that contribute to carcinogenesis and metastatic spread. This review focuses on interactions of thrombospondin-1 and eicosanoids in the microenvironment that promote carcinogenesis and how the microenvironment can be targeted for cancer prevention to increase curative responses of cancer patients.
Literature
1.
go back to reference Bentley, A. A., & Adams, J. C. (2010). The evolution of thrombospondins and their ligand-binding activities. Molecular Biology and Evolution, 27, 2187–2197.CrossRefPubMedPubMedCentral Bentley, A. A., & Adams, J. C. (2010). The evolution of thrombospondins and their ligand-binding activities. Molecular Biology and Evolution, 27, 2187–2197.CrossRefPubMedPubMedCentral
2.
go back to reference Carlson, C. B., Lawler, J., & Mosher, D. F. (2008). Structures of thrombospondins. Cellular and Molecular Life Sciences, 65, 672–686.CrossRefPubMed Carlson, C. B., Lawler, J., & Mosher, D. F. (2008). Structures of thrombospondins. Cellular and Molecular Life Sciences, 65, 672–686.CrossRefPubMed
3.
go back to reference Stenina-Adognravi, O. (2014). Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biology, 37, 69–82.CrossRefPubMed Stenina-Adognravi, O. (2014). Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biology, 37, 69–82.CrossRefPubMed
4.
go back to reference Halper, J., & Kjaer, M. (2014). Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Advances in Experimental Medicine and Biology, 802, 31–47.CrossRefPubMed Halper, J., & Kjaer, M. (2014). Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Advances in Experimental Medicine and Biology, 802, 31–47.CrossRefPubMed
5.
go back to reference Huang, H., Campbell, S. C., Bedford, D. F., Nelius, T., Veliceasa, D., Shroff, E. H., Henkin, J., Schneider, A., Bouck, N., & Volpert, O. V. (2004). Peroxisome proliferator-activated receptor gamma ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Molecular Cancer Research, 2, 541–550.PubMed Huang, H., Campbell, S. C., Bedford, D. F., Nelius, T., Veliceasa, D., Shroff, E. H., Henkin, J., Schneider, A., Bouck, N., & Volpert, O. V. (2004). Peroxisome proliferator-activated receptor gamma ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Molecular Cancer Research, 2, 541–550.PubMed
6.
go back to reference Brennan, E. P., Nolan, K. A., Borgeson, E., Gough, O. S., McEvoy, C. M., Docherty, N. G., Higgins, D. F., Murphy, M., Sadlier, D. M., Ali-Shah, S. T., et al. (2013). Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1. Journal of the American Society of Nephrology, 24, 627–637.CrossRefPubMedPubMedCentral Brennan, E. P., Nolan, K. A., Borgeson, E., Gough, O. S., McEvoy, C. M., Docherty, N. G., Higgins, D. F., Murphy, M., Sadlier, D. M., Ali-Shah, S. T., et al. (2013). Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1. Journal of the American Society of Nephrology, 24, 627–637.CrossRefPubMedPubMedCentral
7.
go back to reference Stenina-Adognravi, O. (2013) Thrombospondins: old players, new games. Current Opinion in Lipidology, 24, 401–409. Stenina-Adognravi, O. (2013) Thrombospondins: old players, new games. Current Opinion in Lipidology, 24, 401–409.
8.
9.
go back to reference Rogers, N. M., Sharifi-Sanjani, M., Csanyi, G., Pagano, P. J., & Isenberg, J. S. (2014). Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biology, 37, 92–101.CrossRefPubMed Rogers, N. M., Sharifi-Sanjani, M., Csanyi, G., Pagano, P. J., & Isenberg, J. S. (2014). Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biology, 37, 92–101.CrossRefPubMed
10.
go back to reference Soto-Pantoja, D. R., Kaur, S., & Roberts, D. D. (2015). CD47 signaling pathways controlling cellular differentiation and responses to stress. Critical Reviews in Biochemistry and Molecular Biology, 50, 212–230.CrossRefPubMedPubMedCentral Soto-Pantoja, D. R., Kaur, S., & Roberts, D. D. (2015). CD47 signaling pathways controlling cellular differentiation and responses to stress. Critical Reviews in Biochemistry and Molecular Biology, 50, 212–230.CrossRefPubMedPubMedCentral
11.
go back to reference Isenberg, J. S., Martin-Manso, G., Maxhimer, J. B., & Roberts, D. D. (2009). Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nature Reviews. Cancer, 9, 182–194.CrossRefPubMedPubMedCentral Isenberg, J. S., Martin-Manso, G., Maxhimer, J. B., & Roberts, D. D. (2009). Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nature Reviews. Cancer, 9, 182–194.CrossRefPubMedPubMedCentral
12.
go back to reference Martin-Manso, G., Galli, S., Ridnour, L. A., Tsokos, M., Wink, D. A., & Roberts, D. D. (2008). Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Research, 68, 7090–7099.CrossRefPubMedPubMedCentral Martin-Manso, G., Galli, S., Ridnour, L. A., Tsokos, M., Wink, D. A., & Roberts, D. D. (2008). Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Research, 68, 7090–7099.CrossRefPubMedPubMedCentral
13.
go back to reference Soto-Pantoja, D. R., Sipes, J. M., Martin-Manso, G., Westwood, B., Morris, N. L., Ghosh, A., Emenaker, N. J., & Roberts, D. D. (2016). Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer. Oncogenesis, 5, e230.CrossRefPubMedPubMedCentral Soto-Pantoja, D. R., Sipes, J. M., Martin-Manso, G., Westwood, B., Morris, N. L., Ghosh, A., Emenaker, N. J., & Roberts, D. D. (2016). Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer. Oncogenesis, 5, e230.CrossRefPubMedPubMedCentral
14.
go back to reference Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: the beginning programs the end. Nature Immunology, 6, 1191–1197.CrossRefPubMed Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: the beginning programs the end. Nature Immunology, 6, 1191–1197.CrossRefPubMed
15.
go back to reference Nakanishi, M., & Rosenberg, D. W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Seminars in Immunopathology, 35, 123–137.CrossRefPubMed Nakanishi, M., & Rosenberg, D. W. (2013). Multifaceted roles of PGE2 in inflammation and cancer. Seminars in Immunopathology, 35, 123–137.CrossRefPubMed
16.
go back to reference Kim, W., Lee, H. N., Jang, J. H., Kim, S. H., Lee, Y. H., Hahn, Y. I., Ngo, H. K., Choi, Y., Joe, Y., Chung, H. T., et al. (2017). 15-Deoxy-delta(12,14)-prostaglandin J2 exerts proresolving effects through nuclear factor E2-related factor 2-induced expression of CD36 and heme oxygenase-1. Antioxidants & Redox Signaling, 27, 1412–1431.CrossRef Kim, W., Lee, H. N., Jang, J. H., Kim, S. H., Lee, Y. H., Hahn, Y. I., Ngo, H. K., Choi, Y., Joe, Y., Chung, H. T., et al. (2017). 15-Deoxy-delta(12,14)-prostaglandin J2 exerts proresolving effects through nuclear factor E2-related factor 2-induced expression of CD36 and heme oxygenase-1. Antioxidants & Redox Signaling, 27, 1412–1431.CrossRef
17.
go back to reference Roberts, W., Magwenzi, S., Aburima, A., & Naseem, K. M. (2010). Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood, 116, 4297–4306.CrossRefPubMed Roberts, W., Magwenzi, S., Aburima, A., & Naseem, K. M. (2010). Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood, 116, 4297–4306.CrossRefPubMed
18.
go back to reference Kuda, O., Jenkins, C. M., Skinner, J. R., Moon, S. H., Su, X., Gross, R. W., & Abumrad, N. A. (2011). CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. The Journal of Biological Chemistry, 286, 17785–17795.CrossRefPubMedPubMedCentral Kuda, O., Jenkins, C. M., Skinner, J. R., Moon, S. H., Su, X., Gross, R. W., & Abumrad, N. A. (2011). CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. The Journal of Biological Chemistry, 286, 17785–17795.CrossRefPubMedPubMedCentral
19.
go back to reference Kotla, S., Singh, N. K., Traylor Jr., J. G., Orr, A. W., & Rao, G. N. (2014). ROS-dependent Syk and Pyk2-mediated STAT1 activation is required for 15(S)-hydroxyeicosatetraenoic acid-induced CD36 expression and foam cell formation. Free Radical Biology & Medicine, 76, 147–162.CrossRef Kotla, S., Singh, N. K., Traylor Jr., J. G., Orr, A. W., & Rao, G. N. (2014). ROS-dependent Syk and Pyk2-mediated STAT1 activation is required for 15(S)-hydroxyeicosatetraenoic acid-induced CD36 expression and foam cell formation. Free Radical Biology & Medicine, 76, 147–162.CrossRef
20.
go back to reference Jaffe, E. A., Ruggiero, J. T., & Falcone, D. J. (1985). Monocytes and macrophages synthesize and secrete thrombospondin. Blood, 65, 79–84.PubMed Jaffe, E. A., Ruggiero, J. T., & Falcone, D. J. (1985). Monocytes and macrophages synthesize and secrete thrombospondin. Blood, 65, 79–84.PubMed
21.
go back to reference Daynes, R. A., & Jones, D. C. (2002). Emerging roles of PPARs in inflammation and immunity. Nature Reviews. Immunology, 2, 748–759.CrossRefPubMed Daynes, R. A., & Jones, D. C. (2002). Emerging roles of PPARs in inflammation and immunity. Nature Reviews. Immunology, 2, 748–759.CrossRefPubMed
23.
go back to reference Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875.CrossRefPubMed Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871–1875.CrossRefPubMed
24.
go back to reference Furuyashiki, T., & Narumiya, S. (2009). Roles of prostaglandin E receptors in stress responses. Current Opinion in Pharmacology, 9, 31–38.CrossRefPubMed Furuyashiki, T., & Narumiya, S. (2009). Roles of prostaglandin E receptors in stress responses. Current Opinion in Pharmacology, 9, 31–38.CrossRefPubMed
25.
go back to reference Gao, A. G., Lindberg, F. P., Finn, M. B., Blystone, S. D., Brown, E. J., & Frazier, W. A. (1996). Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. The Journal of Biological Chemistry, 271, 21–24.CrossRefPubMed Gao, A. G., Lindberg, F. P., Finn, M. B., Blystone, S. D., Brown, E. J., & Frazier, W. A. (1996). Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. The Journal of Biological Chemistry, 271, 21–24.CrossRefPubMed
26.
go back to reference Asch, A. S., Tepler, J., Silbiger, S., & Nachman, R. L. (1991). Cellular attachment to thrombospondin. Cooperative interactions between receptor systems. The Journal of Biological Chemistry , 266, 1740–1745.PubMed Asch, A. S., Tepler, J., Silbiger, S., & Nachman, R. L. (1991). Cellular attachment to thrombospondin. Cooperative interactions between receptor systems. The Journal of Biological Chemistry , 266, 1740–1745.PubMed
27.
go back to reference Chung, J., Wang, X. Q., Lindberg, F. P., & Frazier, W. A. (1999). Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in alpha2beta1-mediated platelet activation. Blood, 94, 642–648.PubMed Chung, J., Wang, X. Q., Lindberg, F. P., & Frazier, W. A. (1999). Thrombospondin-1 acts via IAP/CD47 to synergize with collagen in alpha2beta1-mediated platelet activation. Blood, 94, 642–648.PubMed
28.
go back to reference Guo, N., Zabrenetzky, V. S., Chandrasekaran, L., Sipes, J. M., Lawler, J., Krutzsch, H. C., & Roberts, D. D. (1998). Differential roles of protein kinase C and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Cancer Research, 58, 3154–3162.PubMed Guo, N., Zabrenetzky, V. S., Chandrasekaran, L., Sipes, J. M., Lawler, J., Krutzsch, H. C., & Roberts, D. D. (1998). Differential roles of protein kinase C and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Cancer Research, 58, 3154–3162.PubMed
29.
go back to reference Yao, M., Roberts, D. D., & Isenberg, J. S. (2011). Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacological Research, 63, 13–22.CrossRefPubMed Yao, M., Roberts, D. D., & Isenberg, J. S. (2011). Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacological Research, 63, 13–22.CrossRefPubMed
30.
go back to reference Ding, X., Zhu, C., Qiang, H., Zhou, X., & Zhou, G. (2011). Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomedicine & Pharmacotherapy, 65, 486–490.CrossRef Ding, X., Zhu, C., Qiang, H., Zhou, X., & Zhou, G. (2011). Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomedicine & Pharmacotherapy, 65, 486–490.CrossRef
31.
go back to reference Arguello, M., Paz, S., Hernandez, E., Corriveau-Bourque, C., Fawaz, L. M., Hiscott, J., & Lin, R. (2006). Leukotriene A4 hydrolase expression in PEL cells is regulated at the transcriptional level and leads to increased leukotriene B4 production. Journal of Immunology, 176, 7051–7061.CrossRef Arguello, M., Paz, S., Hernandez, E., Corriveau-Bourque, C., Fawaz, L. M., Hiscott, J., & Lin, R. (2006). Leukotriene A4 hydrolase expression in PEL cells is regulated at the transcriptional level and leads to increased leukotriene B4 production. Journal of Immunology, 176, 7051–7061.CrossRef
32.
go back to reference Stein, E. V., Miller, T. W., Ivins-O’Keefe, K., Kaur, S., & Roberts, D. D. (2016). Secreted thrombospondin-1 regulates macrophage interleukin-1beta production and activation through CD47. Scientific Reports, 6, 19684.CrossRefPubMedPubMedCentral Stein, E. V., Miller, T. W., Ivins-O’Keefe, K., Kaur, S., & Roberts, D. D. (2016). Secreted thrombospondin-1 regulates macrophage interleukin-1beta production and activation through CD47. Scientific Reports, 6, 19684.CrossRefPubMedPubMedCentral
33.
go back to reference Stawski, L., Haines, P., Fine, A., Rudnicka, L., & Trojanowska, M. (2014). MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One, 9, e109763.CrossRefPubMedPubMedCentral Stawski, L., Haines, P., Fine, A., Rudnicka, L., & Trojanowska, M. (2014). MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One, 9, e109763.CrossRefPubMedPubMedCentral
34.
go back to reference Martin-Manso, G., Navarathna, D. H., Galli, S., Soto-Pantoja, D. R., Kuznetsova, S. A., Tsokos, M., & Roberts, D. D. (2012). Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One, 7, e48775.CrossRefPubMedPubMedCentral Martin-Manso, G., Navarathna, D. H., Galli, S., Soto-Pantoja, D. R., Kuznetsova, S. A., Tsokos, M., & Roberts, D. D. (2012). Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One, 7, e48775.CrossRefPubMedPubMedCentral
35.
go back to reference Doyen, V., Rubio, M., Braun, D., Nakajima, T., Abe, J., Saito, H., Delespesse, G., & Sarfati, M. (2003). Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. The Journal of Experimental Medicine, 198, 1277–1283.CrossRefPubMedPubMedCentral Doyen, V., Rubio, M., Braun, D., Nakajima, T., Abe, J., Saito, H., Delespesse, G., & Sarfati, M. (2003). Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. The Journal of Experimental Medicine, 198, 1277–1283.CrossRefPubMedPubMedCentral
36.
go back to reference Sennlaub, F., Valamanesh, F., Vazquez-Tello, A., El-Asrar, A. M., Checchin, D., Brault, S., Gobeil, F., Beauchamp, M. H., Mwaikambo, B., Courtois, Y., et al. (2003). Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation, 108, 198–204.CrossRefPubMed Sennlaub, F., Valamanesh, F., Vazquez-Tello, A., El-Asrar, A. M., Checchin, D., Brault, S., Gobeil, F., Beauchamp, M. H., Mwaikambo, B., Courtois, Y., et al. (2003). Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation, 108, 198–204.CrossRefPubMed
37.
go back to reference Phelps, R. A., Broadbent, T. J., Stafforini, D. M., & Jones, D. A. (2009). New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle, 8, 2549–2556.CrossRefPubMed Phelps, R. A., Broadbent, T. J., Stafforini, D. M., & Jones, D. A. (2009). New perspectives on APC control of cell fate and proliferation in colorectal cancer. Cell Cycle, 8, 2549–2556.CrossRefPubMed
38.
go back to reference Hull, M. A., Faluyi, O. O., Ko, C. W., Holwell, S., Scott, D. J., Cuthbert, R. J., Poulsom, R., Goodlad, R., Bonifer, C., Markham, A. F., & Coletta, P. L. (2006). Regulation of stromal cell cyclooxygenase-2 in the ApcMin/+ mouse model of intestinal tumorigenesis. Carcinogenesis, 27, 382–391.CrossRefPubMed Hull, M. A., Faluyi, O. O., Ko, C. W., Holwell, S., Scott, D. J., Cuthbert, R. J., Poulsom, R., Goodlad, R., Bonifer, C., Markham, A. F., & Coletta, P. L. (2006). Regulation of stromal cell cyclooxygenase-2 in the ApcMin/+ mouse model of intestinal tumorigenesis. Carcinogenesis, 27, 382–391.CrossRefPubMed
39.
go back to reference Chen, L. C., Hao, C. Y., Chiu, Y. S., Wong, P., Melnick, J. S., Brotman, M., Moretto, J., Mendes, F., Smith, A. P., Bennington, J. L., et al. (2004). Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Research, 64, 3694–3700.CrossRefPubMed Chen, L. C., Hao, C. Y., Chiu, Y. S., Wong, P., Melnick, J. S., Brotman, M., Moretto, J., Mendes, F., Smith, A. P., Bennington, J. L., et al. (2004). Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients. Cancer Research, 64, 3694–3700.CrossRefPubMed
40.
go back to reference Zhao, Y., Xiong, Z., Lechner, E. J., Klenotic, P. A., Hamburg, B. J., Hulver, M., Khare, A., Oriss, T., Mangalmurti, N., Chan, Y., et al. (2014). Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunology, 7, 440–448.CrossRefPubMed Zhao, Y., Xiong, Z., Lechner, E. J., Klenotic, P. A., Hamburg, B. J., Hulver, M., Khare, A., Oriss, T., Mangalmurti, N., Chan, Y., et al. (2014). Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunology, 7, 440–448.CrossRefPubMed
41.
go back to reference Hoxha, M. (2017). A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Advances in Medical Sciences, 63, 22–29.CrossRefPubMed Hoxha, M. (2017). A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Advances in Medical Sciences, 63, 22–29.CrossRefPubMed
42.
go back to reference Tahir, A., Bileck, A., Muqaku, B., Niederstaetter, L., Kreutz, D., Mayer, R. L., Wolrab, D., Meier, S. M., Slany, A., & Gerner, C. (2017). Combined proteome and eicosanoid profiling approach for revealing implications of human fibroblasts in chronic inflammation. Analytical Chemistry, 89, 1945–1954.CrossRefPubMed Tahir, A., Bileck, A., Muqaku, B., Niederstaetter, L., Kreutz, D., Mayer, R. L., Wolrab, D., Meier, S. M., Slany, A., & Gerner, C. (2017). Combined proteome and eicosanoid profiling approach for revealing implications of human fibroblasts in chronic inflammation. Analytical Chemistry, 89, 1945–1954.CrossRefPubMed
43.
go back to reference Chlopicki, S., Swies, J., Mogielnicki, A., Buczko, W., Bartus, M., Lomnicka, M., Adamus, J., & Gebicki, J. (2007). 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. British Journal of Pharmacology, 152, 230–239.CrossRefPubMedPubMedCentral Chlopicki, S., Swies, J., Mogielnicki, A., Buczko, W., Bartus, M., Lomnicka, M., Adamus, J., & Gebicki, J. (2007). 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. British Journal of Pharmacology, 152, 230–239.CrossRefPubMedPubMedCentral
44.
go back to reference Wozniacka, A., Wieczorkowska, M., Gebicki, J., & Sysa-Jedrzejowska, A. (2005). Topical application of 1-methylnicotinamide in the treatment of rosacea: a pilot study. Clinical and Experimental Dermatology, 30, 632–635.CrossRefPubMed Wozniacka, A., Wieczorkowska, M., Gebicki, J., & Sysa-Jedrzejowska, A. (2005). Topical application of 1-methylnicotinamide in the treatment of rosacea: a pilot study. Clinical and Experimental Dermatology, 30, 632–635.CrossRefPubMed
45.
go back to reference Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., Philip, N. H., Ayres, J. S., Brodsky, I. E., Gronert, K., & Vance, R. E. (2017). NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity, 46, 649–659.CrossRefPubMedPubMedCentral Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., Philip, N. H., Ayres, J. S., Brodsky, I. E., Gronert, K., & Vance, R. E. (2017). NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity, 46, 649–659.CrossRefPubMedPubMedCentral
46.
go back to reference Wang, X., Shaw, D. K., Hammond, H. L., Sutterwala, F. S., Rayamajhi, M., Shirey, K. A., Perkins, D. J., Bonventre, J. V., Velayutham, T. S., Evans, S. M., et al. (2016). The prostaglandin E2-EP3 receptor axis regulates anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathogens, 12, e1005803.CrossRefPubMedPubMedCentral Wang, X., Shaw, D. K., Hammond, H. L., Sutterwala, F. S., Rayamajhi, M., Shirey, K. A., Perkins, D. J., Bonventre, J. V., Velayutham, T. S., Evans, S. M., et al. (2016). The prostaglandin E2-EP3 receptor axis regulates anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathogens, 12, e1005803.CrossRefPubMedPubMedCentral
47.
go back to reference Sokolowska, M., Chen, L. Y., Liu, Y., Martinez-Anton, A., Qi, H. Y., Logun, C., Alsaaty, S., Park, Y. H., Kastner, D. L., Chae, J. J., & Shelhamer, J. H. (2015). Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. Journal of Immunology, 194, 5472–5487.CrossRef Sokolowska, M., Chen, L. Y., Liu, Y., Martinez-Anton, A., Qi, H. Y., Logun, C., Alsaaty, S., Park, Y. H., Kastner, D. L., Chae, J. J., & Shelhamer, J. H. (2015). Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. Journal of Immunology, 194, 5472–5487.CrossRef
48.
go back to reference Savill, J., Hogg, N., Ren, Y., & Haslett, C. (1992). Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. The Journal of Clinical Investigation, 90, 1513–1522.CrossRefPubMedPubMedCentral Savill, J., Hogg, N., Ren, Y., & Haslett, C. (1992). Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. The Journal of Clinical Investigation, 90, 1513–1522.CrossRefPubMedPubMedCentral
49.
go back to reference Chuang, P. C., Wu, M. H., Shoji, Y., & Tsai, S. J. (2009). Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. The Journal of Pathology, 219, 232–241.CrossRefPubMed Chuang, P. C., Wu, M. H., Shoji, Y., & Tsai, S. J. (2009). Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. The Journal of Pathology, 219, 232–241.CrossRefPubMed
50.
go back to reference Stern, M., Savill, J., & Haslett, C. (1996). Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing Apoptosis Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. The American Journal of Pathology, 149, 911–921.PubMedPubMedCentral Stern, M., Savill, J., & Haslett, C. (1996). Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing Apoptosis Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. The American Journal of Pathology, 149, 911–921.PubMedPubMedCentral
51.
go back to reference Horie, S., Sugita, S., Futagami, Y., Yamada, Y., & Mochizuki, M. (2010). Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells. Clinical Immunology, 136, 83–95.CrossRefPubMed Horie, S., Sugita, S., Futagami, Y., Yamada, Y., & Mochizuki, M. (2010). Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells. Clinical Immunology, 136, 83–95.CrossRefPubMed
52.
53.
go back to reference Bielenberg, D. R., & Zetter, B. R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer Journal, 21, 267–273.CrossRef Bielenberg, D. R., & Zetter, B. R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer Journal, 21, 267–273.CrossRef
54.
go back to reference Lawler, P. R., & Lawler, J. (2012). Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harbor Perspectives in Medicine, 2, a006627.CrossRefPubMedPubMedCentral Lawler, P. R., & Lawler, J. (2012). Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harbor Perspectives in Medicine, 2, a006627.CrossRefPubMedPubMedCentral
55.
go back to reference Isenberg, J. S., Frazier, W. A., & Roberts, D. D. (2008). Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cellular and Molecular Life Sciences, 65, 728–742.CrossRefPubMed Isenberg, J. S., Frazier, W. A., & Roberts, D. D. (2008). Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cellular and Molecular Life Sciences, 65, 728–742.CrossRefPubMed
56.
go back to reference Isenberg, J. S., Annis, D. S., Pendrak, M. L., Ptaszynska, M., Frazier, W. A., Mosher, D. F., & Roberts, D. D. (2009). Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. The Journal of Biological Chemistry, 284, 1116–1125.CrossRefPubMedPubMedCentral Isenberg, J. S., Annis, D. S., Pendrak, M. L., Ptaszynska, M., Frazier, W. A., Mosher, D. F., & Roberts, D. D. (2009). Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. The Journal of Biological Chemistry, 284, 1116–1125.CrossRefPubMedPubMedCentral
57.
go back to reference Isenberg, J. S., Jia, Y., Fukuyama, J., Switzer, C. H., Wink, D. A., & Roberts, D. D. (2007). Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. The Journal of Biological Chemistry, 282, 15404–15415.CrossRefPubMedPubMedCentral Isenberg, J. S., Jia, Y., Fukuyama, J., Switzer, C. H., Wink, D. A., & Roberts, D. D. (2007). Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. The Journal of Biological Chemistry, 282, 15404–15415.CrossRefPubMedPubMedCentral
58.
go back to reference Isenberg, J. S., Ridnour, L. A., Dimitry, J., Frazier, W. A., Wink, D. A., & Roberts, D. D. (2006). CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. The Journal of Biological Chemistry, 281, 26069–26080.CrossRefPubMed Isenberg, J. S., Ridnour, L. A., Dimitry, J., Frazier, W. A., Wink, D. A., & Roberts, D. D. (2006). CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. The Journal of Biological Chemistry, 281, 26069–26080.CrossRefPubMed
60.
go back to reference Nakanishi, M., Sato, T., Li, Y., Nelson, A. J., Farid, M., Michalski, J., Kanaji, N., Wang, X., Basma, H., Patil, A., et al. (2012). Prostaglandin E2 stimulates the production of vascular endothelial growth factor through the E-prostanoid-2 receptor in cultured human lung fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 46, 217–223.CrossRefPubMedPubMedCentral Nakanishi, M., Sato, T., Li, Y., Nelson, A. J., Farid, M., Michalski, J., Kanaji, N., Wang, X., Basma, H., Patil, A., et al. (2012). Prostaglandin E2 stimulates the production of vascular endothelial growth factor through the E-prostanoid-2 receptor in cultured human lung fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 46, 217–223.CrossRefPubMedPubMedCentral
61.
go back to reference Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96, 27–36.CrossRef Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96, 27–36.CrossRef
62.
go back to reference Jais, A., Einwallner, E., Sharif, O., Gossens, K., Lu, T. T., Soyal, S. M., Medgyesi, D., Neureiter, D., Paier-Pourani, J., Dalgaard, K., et al. (2014). Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell, 158, 25–40.CrossRefPubMedPubMedCentral Jais, A., Einwallner, E., Sharif, O., Gossens, K., Lu, T. T., Soyal, S. M., Medgyesi, D., Neureiter, D., Paier-Pourani, J., Dalgaard, K., et al. (2014). Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell, 158, 25–40.CrossRefPubMedPubMedCentral
63.
go back to reference Valderrama, J. A., Durante-Rodriguez, G., Blazquez, B., Garcia, J. L., Carmona, M., & Diaz, E. (2012). Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways. The Journal of Biological Chemistry, 287, 10494–10508.CrossRefPubMedPubMedCentral Valderrama, J. A., Durante-Rodriguez, G., Blazquez, B., Garcia, J. L., Carmona, M., & Diaz, E. (2012). Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways. The Journal of Biological Chemistry, 287, 10494–10508.CrossRefPubMedPubMedCentral
64.
go back to reference Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. K., & Holmes, E. (2013). Hippurate: the natural history of a mammalian-microbial cometabolite. Journal of Proteome Research, 12, 1527–1546.CrossRefPubMed Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. K., & Holmes, E. (2013). Hippurate: the natural history of a mammalian-microbial cometabolite. Journal of Proteome Research, 12, 1527–1546.CrossRefPubMed
65.
go back to reference Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., & Subbaramaiah, K. (2001). Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. The Lancet Oncology, 2, 544–551.CrossRefPubMed Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., & Subbaramaiah, K. (2001). Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. The Lancet Oncology, 2, 544–551.CrossRefPubMed
66.
go back to reference Haviv, F., Bradley, M. F., Kalvin, D. M., Schneider, A. J., Davidson, D. J., Majest, S. M., McKay, L. M., Haskell, C. J., Bell, R. L., Nguyen, B., et al. (2005). Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. Journal of Medicinal Chemistry, 48, 2838–2846.CrossRefPubMed Haviv, F., Bradley, M. F., Kalvin, D. M., Schneider, A. J., Davidson, D. J., Majest, S. M., McKay, L. M., Haskell, C. J., Bell, R. L., Nguyen, B., et al. (2005). Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. Journal of Medicinal Chemistry, 48, 2838–2846.CrossRefPubMed
67.
go back to reference Punekar, S., Zak, S., Kalter, V. G., Dobransky, L., Punekar, I., Lawler, J. W., & Gutierrez, L. S. (2008). Thrombospondin 1 and its mimetic peptide ABT-510 decrease angiogenesis and inflammation in a murine model of inflammatory bowel disease. Pathobiology, 75, 9–21.CrossRefPubMed Punekar, S., Zak, S., Kalter, V. G., Dobransky, L., Punekar, I., Lawler, J. W., & Gutierrez, L. S. (2008). Thrombospondin 1 and its mimetic peptide ABT-510 decrease angiogenesis and inflammation in a murine model of inflammatory bowel disease. Pathobiology, 75, 9–21.CrossRefPubMed
68.
go back to reference Baker, L. H., Rowinsky, E. K., Mendelson, D., Humerickhouse, R. A., Knight, R. A., Qian, J., Carr, R. A., Gordon, G. B., & Demetri, G. D. (2008). Randomized, phase II study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced soft tissue sarcoma. Journal of Clinical Oncology, 26, 5583–5588.CrossRefPubMed Baker, L. H., Rowinsky, E. K., Mendelson, D., Humerickhouse, R. A., Knight, R. A., Qian, J., Carr, R. A., Gordon, G. B., & Demetri, G. D. (2008). Randomized, phase II study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced soft tissue sarcoma. Journal of Clinical Oncology, 26, 5583–5588.CrossRefPubMed
69.
go back to reference Gutierrez, L. S., Ling, J., Nye, D., Papathomas, K., & Dickinson, C. (2015). Thrombospondin peptide ABT-898 inhibits inflammation and angiogenesis in a colitis model. World Journal of Gastroenterology, 21, 6157–6166.CrossRefPubMedPubMedCentral Gutierrez, L. S., Ling, J., Nye, D., Papathomas, K., & Dickinson, C. (2015). Thrombospondin peptide ABT-898 inhibits inflammation and angiogenesis in a colitis model. World Journal of Gastroenterology, 21, 6157–6166.CrossRefPubMedPubMedCentral
Metadata
Title
Thrombospondin-1 interactions regulate eicosanoid metabolism and signaling in cancer-related inflammation
Authors
Manuel U. Ramirez
Elizabeth R. Stirling
Nancy J. Emenaker
David D. Roberts
David R. Soto-Pantoja
Publication date
01-09-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9737-x

Other articles of this Issue 2-3/2018

Cancer and Metastasis Reviews 2-3/2018 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine