Skip to main content
Top
Published in: BMC Oral Health 1/2016

Open Access 01-12-2016 | Research article

Three/four-dimensional (3D/4D) microscopic imaging and processing in clinical dental research

Authors: Ping Ye, Hong Yu, Mojgan Houshmandi

Published in: BMC Oral Health | Issue 1/2016

Login to get access

Abstract

Background

Confocal laser scanning microscope (CLSM) has been widely employed in our laboratory for structural and functional analysis of clinical dental specimens and live cell imaging of cultured oral epithelial cells.

Methods

In this vitro study, a Fluoview 1000 (Olympus) confocal system was utilised to study thick sections of carious lesions (40–100 μm) and periodontal disease tissue samples (20–40 μm) by 2D Z stacking imaging and 3-dimentional (3D) reconstruction. Four-dimensional (4D) imaging when including time or position points was used for live cells to assess penetration/localisation/co-localization of oral pathogen proteins and therapeutic drugs.

Results

Three-dimensional (3D) reconstruction revealed latent features of carious hard tissues (strongly expressed amelogenin proteins in dentin tubules), and soft tissues (increased glial markers GFAP and S100B in pulp components). We also found the oral microbial specific pathogens, Porphyromonas gingivalis to be widely localised inside the periodontal pocket epithelial tissues as detected by 3D reconstruction from a series of 2D sections from periodontal disease tissue samples. 4D live cell imaging showed the diffusion patterns of fluorescent molecules in response to a bacterial virulence factor, the pathogen (gingipain haemagglutinin) domain that attacked epithelial integrity. This technology also showed uptake of a novel porphyrin-linked metronidazole antibiotic into epithelial cells to kill intracellular oral pathogen, P. gingivalis.

Conclusions

Three/four-dimensional (3D/4D) imaging and processing in confocal microscopy is of great interest and benefit to clinical dental researchers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shotton D, White N. Confocal scanning microscopy: three-dimensional biological imaging. Trends Biochem Sci. 1989;14:435–9.CrossRefPubMed Shotton D, White N. Confocal scanning microscopy: three-dimensional biological imaging. Trends Biochem Sci. 1989;14:435–9.CrossRefPubMed
2.
go back to reference Wright SJ, Schatten G. Confocal fluorescence microscopy and three-dimensional reconstruction. J Electron Microsc Tech. 1991;18:2–10.CrossRefPubMed Wright SJ, Schatten G. Confocal fluorescence microscopy and three-dimensional reconstruction. J Electron Microsc Tech. 1991;18:2–10.CrossRefPubMed
3.
go back to reference Roux P, Münter S, Frischknecht F, Herbomel P, Shorte SL. Focusing light on infection in four dimensions. Cell Microbiol. 2004;6:333–43.CrossRefPubMed Roux P, Münter S, Frischknecht F, Herbomel P, Shorte SL. Focusing light on infection in four dimensions. Cell Microbiol. 2004;6:333–43.CrossRefPubMed
4.
go back to reference Zemanová L, Schenk A, Valler MJ, Nienhaus GU, Heilker R. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov Today. 2003;8:1085–93.CrossRefPubMed Zemanová L, Schenk A, Valler MJ, Nienhaus GU, Heilker R. Confocal optics microscopy for biochemical and cellular high-throughput screening. Drug Discov Today. 2003;8:1085–93.CrossRefPubMed
5.
go back to reference Houshmandi M, Ye P, Hunter N. Glial network responses to polymicrobial invasion of dentin. Caries Res. 2014;48:534–48.CrossRefPubMed Houshmandi M, Ye P, Hunter N. Glial network responses to polymicrobial invasion of dentin. Caries Res. 2014;48:534–48.CrossRefPubMed
6.
go back to reference Guo W, Ye P, Yu H, Liu Z, Yang P, Hunter N. CD24 activates the NLRP3 inflammasome through c-Src kinase activity in a model of the lining epithelium of inflamed periodontal tissues. Immun Inflamm Dis. 2014;2:239–53.CrossRefPubMedPubMedCentral Guo W, Ye P, Yu H, Liu Z, Yang P, Hunter N. CD24 activates the NLRP3 inflammasome through c-Src kinase activity in a model of the lining epithelium of inflamed periodontal tissues. Immun Inflamm Dis. 2014;2:239–53.CrossRefPubMedPubMedCentral
7.
go back to reference Prime SS, Nixon SV, Crane IJ, Stone A, Matthews JB, Maitland NJ, Remnant L, Powell SK, et al. The behaviour of human oral squamous cell carcinoma in cell culture. J Pathol. 1990;160:259–69.CrossRefPubMed Prime SS, Nixon SV, Crane IJ, Stone A, Matthews JB, Maitland NJ, Remnant L, Powell SK, et al. The behaviour of human oral squamous cell carcinoma in cell culture. J Pathol. 1990;160:259–69.CrossRefPubMed
8.
go back to reference Ye P, Nadkarni MA, Hunter N. Regulation of Ecadherin and TGF-beta3 expression by CD24 in cultured oral epithelial cells. Biochem Biophys Res Commun. 2006;349:229–35.CrossRefPubMed Ye P, Nadkarni MA, Hunter N. Regulation of Ecadherin and TGF-beta3 expression by CD24 in cultured oral epithelial cells. Biochem Biophys Res Commun. 2006;349:229–35.CrossRefPubMed
9.
go back to reference Swierenga SH, MacManus JP. Preparation of low calcium growth medium suitable for determination of tumorigenicity of cultured cells. J Tissue Culture Methods. 1982;7:1–3.CrossRef Swierenga SH, MacManus JP. Preparation of low calcium growth medium suitable for determination of tumorigenicity of cultured cells. J Tissue Culture Methods. 1982;7:1–3.CrossRef
10.
go back to reference Li N, Yun P, Nadkarni MA, Ghadikolaee NB, Nguyen KA, Lee M, Hunter N, Collyer CA. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis. Mol Microbiol. 2010;76:861–73.CrossRefPubMed Li N, Yun P, Nadkarni MA, Ghadikolaee NB, Nguyen KA, Lee M, Hunter N, Collyer CA. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis. Mol Microbiol. 2010;76:861–73.CrossRefPubMed
11.
go back to reference Ye P, Harty D, Commandeur Z, Hunter N. Binding of Streptococcus gordonii to oral epithelial monolayers increases paracellular barrier function. Microb Pathog. 2013;56:53–9.CrossRefPubMed Ye P, Harty D, Commandeur Z, Hunter N. Binding of Streptococcus gordonii to oral epithelial monolayers increases paracellular barrier function. Microb Pathog. 2013;56:53–9.CrossRefPubMed
12.
go back to reference Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun. 2001;69:4242–7.CrossRefPubMedPubMedCentral Nisapakultorn K, Ross KF, Herzberg MC. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun. 2001;69:4242–7.CrossRefPubMedPubMedCentral
13.
go back to reference Yap BC, Simpkins GL, Collyer CA, Hunter N, Crossley MJ. Porphyrin-linked nitroimidazole antibiotics targeting Porphyromonas gingivalis. Org Biomol Chem. 2009;7:2855–63.CrossRefPubMed Yap BC, Simpkins GL, Collyer CA, Hunter N, Crossley MJ. Porphyrin-linked nitroimidazole antibiotics targeting Porphyromonas gingivalis. Org Biomol Chem. 2009;7:2855–63.CrossRefPubMed
14.
go back to reference DeCarlo AA, Paramaesvaran M, Yun PL, Collyer C, Hunter N. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. J Bacteriol. 1999;181:3784–91.PubMedPubMedCentral DeCarlo AA, Paramaesvaran M, Yun PL, Collyer C, Hunter N. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. J Bacteriol. 1999;181:3784–91.PubMedPubMedCentral
15.
go back to reference Kopecky BJ, Duncan JS, Elliott KL, Fritzsch B. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy. J Microsc. 2012;248:292–8.CrossRefPubMed Kopecky BJ, Duncan JS, Elliott KL, Fritzsch B. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy. J Microsc. 2012;248:292–8.CrossRefPubMed
16.
go back to reference Attik GN, Gritsch K, Colon P, Grosgogeat B. Confocal time lapse imaging as an efficient method for the cytocompatibility evaluation of dental composites. J Vis Exp. 2014;93:e51949. Attik GN, Gritsch K, Colon P, Grosgogeat B. Confocal time lapse imaging as an efficient method for the cytocompatibility evaluation of dental composites. J Vis Exp. 2014;93:e51949.
17.
go back to reference Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011;300:C723–42.CrossRefPubMedPubMedCentral Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011;300:C723–42.CrossRefPubMedPubMedCentral
18.
go back to reference Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys J. 2004;86:3993–4003.CrossRefPubMedPubMedCentral Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys J. 2004;86:3993–4003.CrossRefPubMedPubMedCentral
19.
go back to reference Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol. 2014;5:477.CrossRefPubMedPubMedCentral Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol. 2014;5:477.CrossRefPubMedPubMedCentral
20.
go back to reference Karygianni L, Follo M, Hellwig E, Burghardt D, Wolkewitz M, Anderson A, Al-Ahmad A. Microscope-Based Imaging Platform for Large-Scale Analysis of Oral Biofilms. Appl Environ Microbiol. 2012;78:8703–11.CrossRefPubMedPubMedCentral Karygianni L, Follo M, Hellwig E, Burghardt D, Wolkewitz M, Anderson A, Al-Ahmad A. Microscope-Based Imaging Platform for Large-Scale Analysis of Oral Biofilms. Appl Environ Microbiol. 2012;78:8703–11.CrossRefPubMedPubMedCentral
21.
go back to reference Thurnheer T, Belibasakis GN, Bostanci N. Colonisation of gingival epithelia by subgingival biofilms in vitro: Role of “red complex” bacteria. Arch Oral Biol. 2014;59:977–86.CrossRefPubMed Thurnheer T, Belibasakis GN, Bostanci N. Colonisation of gingival epithelia by subgingival biofilms in vitro: Role of “red complex” bacteria. Arch Oral Biol. 2014;59:977–86.CrossRefPubMed
22.
go back to reference Rudney JD, Chen R, Sedgewick GJ. Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in Buccal Epithelial Cells Collected from Human Subjects. Infect Immun. 2001;69:2700–7.CrossRefPubMedPubMedCentral Rudney JD, Chen R, Sedgewick GJ. Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in Buccal Epithelial Cells Collected from Human Subjects. Infect Immun. 2001;69:2700–7.CrossRefPubMedPubMedCentral
23.
go back to reference Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, Bengtsson T, Sirsjö A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics. 2013;14:770.CrossRefPubMedPubMedCentral Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, Bengtsson T, Sirsjö A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics. 2013;14:770.CrossRefPubMedPubMedCentral
24.
go back to reference Sowell J, Strekowski L, Patonay G. DNA and protein applications of near-infrared dyes. J Biomed Opt. 2002;7:571–5.CrossRefPubMed Sowell J, Strekowski L, Patonay G. DNA and protein applications of near-infrared dyes. J Biomed Opt. 2002;7:571–5.CrossRefPubMed
25.
go back to reference Dempsey GT. A user’s guide to localization-based super-resolution fluorescence imaging. Methods Cell Biol. 2013;114:561–92.CrossRefPubMed Dempsey GT. A user’s guide to localization-based super-resolution fluorescence imaging. Methods Cell Biol. 2013;114:561–92.CrossRefPubMed
26.
go back to reference Laurent M, Johannin G, Gilbert N, Lucas L, Cassio D, Petit PX, Fleury A. Power and limits of laser scanning confocal microscopy. Biol Cell. 1994;80:229–40.CrossRefPubMed Laurent M, Johannin G, Gilbert N, Lucas L, Cassio D, Petit PX, Fleury A. Power and limits of laser scanning confocal microscopy. Biol Cell. 1994;80:229–40.CrossRefPubMed
28.
go back to reference Ball G, Parton RM, Hamilton RS, Davis I. A cell biologist’s guide to high resolution imaging. Methods Enzymol. 2012;504:29–55.CrossRefPubMed Ball G, Parton RM, Hamilton RS, Davis I. A cell biologist’s guide to high resolution imaging. Methods Enzymol. 2012;504:29–55.CrossRefPubMed
Metadata
Title
Three/four-dimensional (3D/4D) microscopic imaging and processing in clinical dental research
Authors
Ping Ye
Hong Yu
Mojgan Houshmandi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2016
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-016-0282-0

Other articles of this Issue 1/2016

BMC Oral Health 1/2016 Go to the issue