Skip to main content
Top
Published in: BMC Oral Health 1/2016

Open Access 01-12-2016 | Research article

Intraoral photobiomodulation-induced orthodontic tooth alignment: a preliminary study

Authors: Timothy Shaughnessy, Alpdogan Kantarci, Chung How Kau, Darya Skrenes, Sanjar Skrenes, Dennis Ma

Published in: BMC Oral Health | Issue 1/2016

Login to get access

Abstract

Background

Numerous strategies have been proposed to decrease orthodontic treatment time. Photobiomodulation (PBM) has previously been demonstrated to assist in this objective. The aim of this study was to test if intraoral PBM increases the rate of tooth alignment and reduces the time required to resolve anterior dental crowding.

Methods

Nineteen orthodontic subjects with Class I or Class II malocclusion and Little’s Irregularity Index (LII) ≥ 3 mm were selected from a pool of applicants, providing 28 total arches. No cases required extraction. The test group (N = 11, 18 arches, 10 upper, 8 lower) received daily PBM treatment with an intraoral LED device (OrthoPulse™, Biolux Research Ltd.) during orthodontic treatment, while the control group (N = 8, 10 arches, 3 upper, 7 lower) received only orthodontic treatment. The PBM device exposed the buccal side of the gums to near-infrared light with a continuous 850-nm wavelength, generating an average daily energy density of 9.5 J/cm2. LII was measured at the start (T0) of orthodontic treatment until alignment was reached (T1, where LII ≤ 1 mm). The control group was mostly bonded with 0.018-in slot self-ligating SPEED brackets (Hespeler Orthodontics, Cambridge, ON. Canada), while conventionally-ligating Ormco Mini-Diamond twins were used on the PBM group (Ormco, Glendora, Calif. USA). Both groups progressed through alignment with NiTi arch-wires from 0.014-in through to 0.018-in (Ormco), with identical arch-wire changes. The rate of anterior alignment, in LII mm/week, and total treatment time was collected for both groups. Cox proportional hazards models were used to compare groups and while considering age, sex, ethnicity, arch and degree of crowding.

Results

The mean alignment rate for the PBM group was significantly higher than that of the control group, with an LII change rate of 1.27 mm/week (SD 0.53, 95 % CI ± 0.26) versus 0.44 mm/week (SD 0.20, 95 % CI ± 0.12), respectively (p = 0.0002). The treatment time to alignment was significantly smaller for the PBM group, which achieved alignment in 48 days (SD 39, 95 % CI ± 39), while the control group took 104 days (SD 55, 95 % CI ±19, p = 0.0053) on average. These results demonstrated that intraoral PBM increased the average rate of tooth movement by 2.9-fold, resulting in a 54 % average decrease in alignment duration versus control. The average PBM compliance to daily treatments was 93 % during alignment.

Conclusions

Under the limitations of this study, the findings suggest that intraoral PBM could be used to decrease anterior alignment treatment time, which could consequently decrease full orthodontic treatment time. However, due to its limitations, further research in the form of a large, randomized trial is needed.

Trial registration

ClinicalTrials.gov NCT02267837. Registered 10 October 2014.
Literature
1.
go back to reference Skidmore KJ, Brook KJ, Thomson WM, Harding WJ. Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofacial Orthop. 2006;129:230–8.PubMedCrossRef Skidmore KJ, Brook KJ, Thomson WM, Harding WJ. Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofacial Orthop. 2006;129:230–8.PubMedCrossRef
2.
go back to reference Doshi-Mehta G et al. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289–97.PubMedCrossRef Doshi-Mehta G et al. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. Am J Orthod Dentofacial Orthop. 2012;141(3):289–97.PubMedCrossRef
3.
go back to reference Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment - a frontier in orthodontics. Prog Orthod. 2013;14:42.PubMedPubMedCentralCrossRef Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment - a frontier in orthodontics. Prog Orthod. 2013;14:42.PubMedPubMedCentralCrossRef
4.
go back to reference Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004;22:541–6.PubMedCrossRef Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004;22:541–6.PubMedCrossRef
5.
go back to reference Sefi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25:199–204.CrossRef Sefi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur J Orthod. 2003;25:199–204.CrossRef
6.
go back to reference Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by closed coil springs in rats. EUR Orthod Soc. 2001;23:525–45. Hashimoto F, Kobayashi Y, Mataki S, Kobayashi K, Kato Y, Sakai H. Administration of osteocalcin accelerates orthodontic tooth movement induced by closed coil springs in rats. EUR Orthod Soc. 2001;23:525–45.
7.
go back to reference Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(8):e1–e10.PubMed Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131(8):e1–e10.PubMed
8.
go back to reference Dias FJ, Issa JPM, de Carvalho Vicentini FTM, Fonseca MJV, Leão JC, Siéssere S, et al. Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg. 2011;29(10):677–84.PubMedCrossRef Dias FJ, Issa JPM, de Carvalho Vicentini FTM, Fonseca MJV, Leão JC, Siéssere S, et al. Effects of low-level laser therapy on the oxidative metabolism and matrix proteins in the rat masseter muscle. Photomed Laser Surg. 2011;29(10):677–84.PubMedCrossRef
9.
go back to reference Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92.PubMedCrossRef Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92.PubMedCrossRef
10.
go back to reference Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39(4):373–8.PubMedCrossRef Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39(4):373–8.PubMedCrossRef
11.
go back to reference Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, et al. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol. 2009;46:4–14.PubMedPubMedCentralCrossRef Zhang R, Mio Y, Pratt PF, Lohr N, Warltier DC, Whelan HT, et al. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J Mol Cell Cardiol. 2009;46:4–14.PubMedPubMedCentralCrossRef
12.
go back to reference He WL, Li CJ, Liu ZP, Sun JF, Hu ZA, Yin X, et al. Efficacy of low-level laser therapy in the management of orthodontic pain: a systematic review and meta-analysis. Lasers Med Sci. 2013;28(6):1581–9.PubMedCrossRef He WL, Li CJ, Liu ZP, Sun JF, Hu ZA, Yin X, et al. Efficacy of low-level laser therapy in the management of orthodontic pain: a systematic review and meta-analysis. Lasers Med Sci. 2013;28(6):1581–9.PubMedCrossRef
13.
go back to reference Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci. 2014;29(2):559–64.PubMedCrossRef Eslamian L, Borzabadi-Farahani A, Hassanzadeh-Azhiri A, Badiee MR, Fekrazad R. The effect of 810-nm low-level laser therapy on pain caused by orthodontic elastomeric separators. Lasers Med Sci. 2014;29(2):559–64.PubMedCrossRef
14.
go back to reference Panhoca VH, Lizarelli Rde F, Nunez SC, Pizzo RC, Grecco C, Paolillo FR, et al. Comparative clinical study of light analgesic effect on temperomandibular disorder (TMD) using red and infrared led therapy. Lasers Med Sci. 2015;30(2):815–22.PubMedCrossRef Panhoca VH, Lizarelli Rde F, Nunez SC, Pizzo RC, Grecco C, Paolillo FR, et al. Comparative clinical study of light analgesic effect on temperomandibular disorder (TMD) using red and infrared led therapy. Lasers Med Sci. 2015;30(2):815–22.PubMedCrossRef
15.
go back to reference Ferraresi C, Dos Santos RV, Marques G, Zangrande M, Leonaldo R, Hamblin MR, et al. Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci. 2015;30(4):1281–7.PubMedCrossRef Ferraresi C, Dos Santos RV, Marques G, Zangrande M, Leonaldo R, Hamblin MR, et al. Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci. 2015;30(4):1281–7.PubMedCrossRef
16.
go back to reference Pinheiro AL, Soares LG, Cangussú MC, Santos NR, Barbosa AF, Silveira JL. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci. 2012;27(5):903–16.PubMedCrossRef Pinheiro AL, Soares LG, Cangussú MC, Santos NR, Barbosa AF, Silveira JL. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci. 2012;27(5):903–16.PubMedCrossRef
17.
go back to reference Pinheiro AL, Soares LG, Aciole GT, Correia NA, Barbosa AF, Ramalho LM, et al. Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A. 2011;98(2):212–21.PubMedCrossRef Pinheiro AL, Soares LG, Aciole GT, Correia NA, Barbosa AF, Ramalho LM, et al. Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A. 2011;98(2):212–21.PubMedCrossRef
18.
go back to reference Corazza AV, Paolillo FR, Groppo FC, Bagnato VS, Caria PH. Phototherapy and resistance training prevent sarcopenia in ovariectomized rats. Lasers Med Sci. 2013;28(6):1467–74.PubMedCrossRef Corazza AV, Paolillo FR, Groppo FC, Bagnato VS, Caria PH. Phototherapy and resistance training prevent sarcopenia in ovariectomized rats. Lasers Med Sci. 2013;28(6):1467–74.PubMedCrossRef
19.
go back to reference Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye and Brain. 2011;3:49–67. Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye and Brain. 2011;3:49–67.
20.
go back to reference Eells JT, Wong-Riley MT, Ver Hoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.PubMedCrossRef Eells JT, Wong-Riley MT, Ver Hoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.PubMedCrossRef
21.
go back to reference Masha RT, Houreld NN, Abrahamse H. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg. 2013;31(2):47–53. doi:10.1089/pho.2012.3369. Epub 2012 Dec 16.PubMedCrossRef Masha RT, Houreld NN, Abrahamse H. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg. 2013;31(2):47–53. doi:10.​1089/​pho.​2012.​3369. Epub 2012 Dec 16.PubMedCrossRef
22.
go back to reference Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–44.PubMedPubMedCentralCrossRef Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003;100(6):3439–44.PubMedPubMedCentralCrossRef
23.
go back to reference Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Laser Surg Med. 2000;26:282–91.CrossRef Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Laser Surg Med. 2000;26:282–91.CrossRef
24.
go back to reference Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117–20.PubMedCrossRef Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117–20.PubMedCrossRef
25.
go back to reference Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191–6.PubMedCrossRef Sousa MV, Scanavini MA, Sannomiya EK, Velasco LG, Angelieri F. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg. 2011;29(3):191–6.PubMedCrossRef
26.
go back to reference Youssef M, Ashkar S, Hamade E, Gutnecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;1:27–33. Youssef M, Ashkar S, Hamade E, Gutnecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci. 2008;1:27–33.
27.
go back to reference Kalemaj Z, Debernardl CL, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement: a systematic review. Eur J Oral Implantol. 2015;8(1):9–24.PubMed Kalemaj Z, Debernardl CL, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement: a systematic review. Eur J Oral Implantol. 2015;8(1):9–24.PubMed
28.
go back to reference Carvalho-Lobato P, Garcia VJ, Kasem K, Ustrell-Torrent JM, Tallón-Walton V, Manzanares-Céspedes MC. Tooth movement in orthodontic treatment with low-level laser therapy: a systematic review of human and animal studies. Photomed Laser Surg. 2014;32(5):302–9.PubMedCrossRef Carvalho-Lobato P, Garcia VJ, Kasem K, Ustrell-Torrent JM, Tallón-Walton V, Manzanares-Céspedes MC. Tooth movement in orthodontic treatment with low-level laser therapy: a systematic review of human and animal studies. Photomed Laser Surg. 2014;32(5):302–9.PubMedCrossRef
29.
go back to reference Domínguez A, Velásquez SA. Tooth movement in orthodontic treatment with low-level laser therapy: systematic review imprecisions. Photomed Laser Surg. 2014;32(8):476–7.PubMedCrossRef Domínguez A, Velásquez SA. Tooth movement in orthodontic treatment with low-level laser therapy: systematic review imprecisions. Photomed Laser Surg. 2014;32(8):476–7.PubMedCrossRef
30.
go back to reference Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerating orthodontic tooth movement: a systematic review and meta-analysis. J Dent. 2014;42(10):1300–19.PubMedCrossRef Gkantidis N, Mistakidis I, Kouskoura T, Pandis N. Effectiveness of non-conventional methods for accelerating orthodontic tooth movement: a systematic review and meta-analysis. J Dent. 2014;42(10):1300–19.PubMedCrossRef
31.
go back to reference Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;14:30.PubMedPubMedCentralCrossRef Kau CH, Kantarci A, Shaughnessy T, Vachiramon A, Santiwong P, de la Fuente A, et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod. 2013;14:30.PubMedPubMedCentralCrossRef
32.
go back to reference Little RM. The irregularity index: a quantitative score of mandibular anterior alignment. Am J Orthod. 1975;68(5):554–63. Little RM. The irregularity index: a quantitative score of mandibular anterior alignment. Am J Orthod. 1975;68(5):554–63.
33.
go back to reference Bernabé E, Flores-Mir C. Estimating arch length discrepancy through Little's Irregularity Index for epidemiological use. Eur J Orthod. 2006;28(3):269–73.PubMedCrossRef Bernabé E, Flores-Mir C. Estimating arch length discrepancy through Little's Irregularity Index for epidemiological use. Eur J Orthod. 2006;28(3):269–73.PubMedCrossRef
34.
go back to reference Almasoud N, Bearn D. Little’s irregularity index: Photographic assessment vs study model assessment. Am J Orthod Dentofacial Orthop. 2010;138:787–94.PubMedCrossRef Almasoud N, Bearn D. Little’s irregularity index: Photographic assessment vs study model assessment. Am J Orthod Dentofacial Orthop. 2010;138:787–94.PubMedCrossRef
35.
go back to reference Pandis N, Polychronopoulou A, Katsaros C, Eliades T. Comparative assessment of conventional and self-ligating appliances on the effect of mandibular intermolar distance in adolescent nonextraction patients: a single-center randomized controlled trial. Am J Orthod Dentofacial Orthop. 2011;140(3):e99–e105.PubMedCrossRef Pandis N, Polychronopoulou A, Katsaros C, Eliades T. Comparative assessment of conventional and self-ligating appliances on the effect of mandibular intermolar distance in adolescent nonextraction patients: a single-center randomized controlled trial. Am J Orthod Dentofacial Orthop. 2011;140(3):e99–e105.PubMedCrossRef
36.
go back to reference Pandis N, Polychronopoulou A, Makou M, Eliades T. Mandibular dental arch changes associated with treatment of crowding using self-ligating and conventional brackets. Eur J Orthod. 2010;32:248–53.PubMedCrossRef Pandis N, Polychronopoulou A, Makou M, Eliades T. Mandibular dental arch changes associated with treatment of crowding using self-ligating and conventional brackets. Eur J Orthod. 2010;32:248–53.PubMedCrossRef
37.
go back to reference Babyak MA. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66(3):411–21.PubMed Babyak MA. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med. 2004;66(3):411–21.PubMed
38.
go back to reference Turbill EA, Richmond S. The time-factor in orthodontics: What influences the duration of treatments in National Health Service practices? Community Dent Oral Epidemiol. 2001;29(1):62–72.PubMedCrossRef Turbill EA, Richmond S. The time-factor in orthodontics: What influences the duration of treatments in National Health Service practices? Community Dent Oral Epidemiol. 2001;29(1):62–72.PubMedCrossRef
39.
go back to reference Reddy VB, Kumar TA, Prasad M, Nuvvula S, Patil RG, Reddy PK. A comparative in-vivo evaluation of the alignment efficiency of 5 ligation methods: A prospective randomized clinical trial. Eur J Dent. 2014;8(1):23–31.PubMedPubMedCentralCrossRef Reddy VB, Kumar TA, Prasad M, Nuvvula S, Patil RG, Reddy PK. A comparative in-vivo evaluation of the alignment efficiency of 5 ligation methods: A prospective randomized clinical trial. Eur J Dent. 2014;8(1):23–31.PubMedPubMedCentralCrossRef
40.
go back to reference Fleiss JL. The Design and Analysis of Clinical Experiments. New York: John Wiley Sons; 1986. p. 1–31. Fleiss JL. The Design and Analysis of Clinical Experiments. New York: John Wiley Sons; 1986. p. 1–31.
41.
go back to reference Bredin R. Light Transmission Profiles; Meat and Bone. Prepared for Biolux Research Ltd. August 2013. Bredin R. Light Transmission Profiles; Meat and Bone. Prepared for Biolux Research Ltd. August 2013.
42.
go back to reference Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter Sr TA, Brondon P, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med. 2007;39:534–42.PubMedCrossRef Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter Sr TA, Brondon P, et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med. 2007;39:534–42.PubMedCrossRef
43.
go back to reference Mester E, Nagylucskay S, Waidelich W, Tisza S, Greguss P, Haina D, et al. Effects of direct laser radiation on human lymphocytes. Arch Dermatol Res. 1978;263:241–5.PubMedCrossRef Mester E, Nagylucskay S, Waidelich W, Tisza S, Greguss P, Haina D, et al. Effects of direct laser radiation on human lymphocytes. Arch Dermatol Res. 1978;263:241–5.PubMedCrossRef
44.
go back to reference Hamblin MR, Demidova TN. Mechanisms for low-light therapy. Proc SPIE. 2006;6140:1–12. Hamblin MR, Demidova TN. Mechanisms for low-light therapy. Proc SPIE. 2006;6140:1–12.
45.
go back to reference Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg. 2001;19:29–33.PubMedCrossRef Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg. 2001;19:29–33.PubMedCrossRef
46.
go back to reference Goulart CS, Nouer PRA, Martins LM, Garbin IUL Lizarelli RFZ. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg. 2006;24:192–6.PubMedCrossRef Goulart CS, Nouer PRA, Martins LM, Garbin IUL Lizarelli RFZ. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg. 2006;24:192–6.PubMedCrossRef
47.
48.
go back to reference Fleming P, DiBiase AT, Grammati S, Lee RT. Efficiency of mandibular arch alignment with 2 preadjusted edgewise appliances. Am J Orthod Dentofacial Orthop. 2009;135(5):597–602.PubMedCrossRef Fleming P, DiBiase AT, Grammati S, Lee RT. Efficiency of mandibular arch alignment with 2 preadjusted edgewise appliances. Am J Orthod Dentofacial Orthop. 2009;135(5):597–602.PubMedCrossRef
49.
go back to reference Miles PG, Weyant RJ, Rustveld L. A Clinical Trial of Damon 2 vs Conventional Twin Brackets during Initial Alignment. Angle Orthod. 2006;76(3):480–5.PubMed Miles PG, Weyant RJ, Rustveld L. A Clinical Trial of Damon 2 vs Conventional Twin Brackets during Initial Alignment. Angle Orthod. 2006;76(3):480–5.PubMed
50.
go back to reference Ong E, McCallum H, Griffin MP, Ho C. Efficiency of self-ligating vs conventionally ligated brackets during initial alignment. Am J Orthod Dentofacial Orthop. 2006;138(2):e1–e.7. Ong E, McCallum H, Griffin MP, Ho C. Efficiency of self-ligating vs conventionally ligated brackets during initial alignment. Am J Orthod Dentofacial Orthop. 2006;138(2):e1–e.7.
51.
go back to reference Papageorgiou SN, Konstantinidis I, Papadopoulou K, Jäger A, Bourauel C. Clinical effects of pre-adjusted edgewise orthodontic brackets: a systematic review and meta-analysis. Eur J Orthod. 2014;36(3):350–63.PubMedCrossRef Papageorgiou SN, Konstantinidis I, Papadopoulou K, Jäger A, Bourauel C. Clinical effects of pre-adjusted edgewise orthodontic brackets: a systematic review and meta-analysis. Eur J Orthod. 2014;36(3):350–63.PubMedCrossRef
52.
go back to reference Sebastian B. Alignment efficiency of superelastic coaxial nickel-titanium vs superelastic single-stranded nickel-titanium in relieving mandibular anterior crowding: a randomized controlled prospective study. Angle Orthod. 2012;82(4):703–8.PubMedCrossRef Sebastian B. Alignment efficiency of superelastic coaxial nickel-titanium vs superelastic single-stranded nickel-titanium in relieving mandibular anterior crowding: a randomized controlled prospective study. Angle Orthod. 2012;82(4):703–8.PubMedCrossRef
Metadata
Title
Intraoral photobiomodulation-induced orthodontic tooth alignment: a preliminary study
Authors
Timothy Shaughnessy
Alpdogan Kantarci
Chung How Kau
Darya Skrenes
Sanjar Skrenes
Dennis Ma
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2016
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-015-0159-7

Other articles of this Issue 1/2016

BMC Oral Health 1/2016 Go to the issue