Skip to main content
Top
Published in: Emergency Radiology 6/2022

16-08-2022 | Thoracic Trauma | Original Article

A pilot study of deep learning-based CT volumetry for traumatic hemothorax

Authors: David Dreizin, Bryan Nixon, Jiazhen Hu, Benjamin Albert, Chang Yan, Gary Yang, Haomin Chen, Yuanyuan Liang, Nahye Kim, Jean Jeudy, Guang Li, Elana B. Smith, Mathias Unberath

Published in: Emergency Radiology | Issue 6/2022

Login to get access

Abstract

Purpose

We employ nnU-Net, a state-of-the-art self-configuring deep learning-based semantic segmentation method for quantitative visualization of hemothorax (HTX) in trauma patients, and assess performance using a combination of overlap and volume-based metrics. The accuracy of hemothorax volumes for predicting a composite of hemorrhage-related outcomes — massive transfusion (MT) and in-hospital mortality (IHM) not related to traumatic brain injury — is assessed and compared to subjective expert consensus grading by an experienced chest and emergency radiologist.

Materials and methods

The study included manually labeled admission chest CTs from 77 consecutive adult patients with non-negligible (≥ 50 mL) traumatic HTX between 2016 and 2018 from one trauma center. DL results of ensembled nnU-Net were determined from fivefold cross-validation and compared to individual 2D, 3D, and cascaded 3D nnU-Net results using the Dice similarity coefficient (DSC) and volume similarity index. Pearson’s r, intraclass correlation coefficient (ICC), and mean bias were also determined for the best performing model. Manual and automated hemothorax volumes and subjective hemothorax volume grades were analyzed as predictors of MT and IHM using AUC comparison. Volume cut-offs yielding sensitivity or specificity ≥ 90% were determined from ROC analysis.

Results

Ensembled nnU-Net achieved a mean DSC of 0.75 (SD: ± 0.12), and mean volume similarity of 0.91 (SD: ± 0.10), Pearson r of 0.93, and ICC of 0.92. Mean overmeasurement bias was only 1.7 mL despite a range of manual HTX volumes from 35 to 1503 mL (median: 178 mL). AUC of automated volumes for the composite outcome was 0.74 (95%CI: 0.58–0.91), compared to 0.76 (95%CI: 0.58–0.93) for manual volumes, and 0.76 (95%CI: 0.62–0.90) for consensus expert grading (p = 0.93). Automated volume cut-offs of 77 mL and 334 mL predicted the outcome with 93% sensitivity and 90% specificity respectively.

Conclusion

Automated HTX volumetry had high method validity, yielded interpretable visual results, and had similar performance for the hemorrhage-related outcomes assessed compared to manual volumes and expert consensus grading. The results suggest promising avenues for automated HTX volumetry in research and clinical care.
Literature
1.
go back to reference Mowery NT, Gunter OL, Collier BR, Jose’J D Jr, Haut E, Hildreth A, Holevar M, Mayberry J, Streib E (2011) Practice management guidelines for management of hemothorax and occult pneumothorax. J Trauma Acute Care Surg 70(2):510–518CrossRef Mowery NT, Gunter OL, Collier BR, Jose’J D Jr, Haut E, Hildreth A, Holevar M, Mayberry J, Streib E (2011) Practice management guidelines for management of hemothorax and occult pneumothorax. J Trauma Acute Care Surg 70(2):510–518CrossRef
2.
go back to reference Sangster GP, González-Beicos A, Carbo AI, Heldmann MG, Ibrahim H, Carrascosa P, Nazar M, D’Agostino HB (2007) Blunt traumatic injuries of the lung parenchyma, pleura, thoracic wall, and intrathoracic airways: multidetector computer tomography imaging findings. Emerg Radiol 14(5):297–310CrossRefPubMed Sangster GP, González-Beicos A, Carbo AI, Heldmann MG, Ibrahim H, Carrascosa P, Nazar M, D’Agostino HB (2007) Blunt traumatic injuries of the lung parenchyma, pleura, thoracic wall, and intrathoracic airways: multidetector computer tomography imaging findings. Emerg Radiol 14(5):297–310CrossRefPubMed
3.
go back to reference Mahmood I, Abdelrahman H, Al-Hassani A, Nabir S, Sebastian M, Maull K (2011) Clinical management of occult hemothorax: a prospective study of 81 patients. Am J Surg 201(6):766–769CrossRefPubMed Mahmood I, Abdelrahman H, Al-Hassani A, Nabir S, Sebastian M, Maull K (2011) Clinical management of occult hemothorax: a prospective study of 81 patients. Am J Surg 201(6):766–769CrossRefPubMed
4.
go back to reference Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32(3):609–631CrossRefPubMed Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32(3):609–631CrossRefPubMed
5.
go back to reference Bilello JF, Davis JW, Lemaster DM (2005) Occult traumatic hemothorax: when can sleeping dogs lie? Am J Surg 190(6):844–848CrossRef Bilello JF, Davis JW, Lemaster DM (2005) Occult traumatic hemothorax: when can sleeping dogs lie? Am J Surg 190(6):844–848CrossRef
6.
go back to reference Dreizin D, Munera F (2015) Multidetector CT for penetrating torso trauma: state of the art. Radiology 277(2):338–355CrossRefPubMed Dreizin D, Munera F (2015) Multidetector CT for penetrating torso trauma: state of the art. Radiology 277(2):338–355CrossRefPubMed
7.
go back to reference Demetri L, Aguilar MMM, Bohnen JD, Whitesell R, Yeh DD, King D, de Moya M (2018) Is observation for traumatic hemothorax safe? J Trauma Acute Care Surg 84(3):454–458CrossRefPubMed Demetri L, Aguilar MMM, Bohnen JD, Whitesell R, Yeh DD, King D, de Moya M (2018) Is observation for traumatic hemothorax safe? J Trauma Acute Care Surg 84(3):454–458CrossRefPubMed
8.
go back to reference Stafford RE, Linn J, Washington L (2006) Incidence and management of occult hemothoraces. Am J Surg 192(6):722–726CrossRefPubMed Stafford RE, Linn J, Washington L (2006) Incidence and management of occult hemothoraces. Am J Surg 192(6):722–726CrossRefPubMed
9.
go back to reference Marts B, Durham R, Shapiro M, Mazuski JE, Zuckerman D, Sundaram M, Luchtefeld WB (1994) Computed tomography in the diagnosis of blunt thoracic injury. Am J Surg 168(6):688–692CrossRefPubMed Marts B, Durham R, Shapiro M, Mazuski JE, Zuckerman D, Sundaram M, Luchtefeld WB (1994) Computed tomography in the diagnosis of blunt thoracic injury. Am J Surg 168(6):688–692CrossRefPubMed
10.
go back to reference Dreizin D, Bodanapally UK, Neerchal N, Tirada N, Patlas M, Herskovits E (2016) Volumetric analysis of pelvic hematomas after blunt trauma using semi-automated seeded region growing segmentation: a method validation study. Abdom Radiol 41(11):2203–2208CrossRef Dreizin D, Bodanapally UK, Neerchal N, Tirada N, Patlas M, Herskovits E (2016) Volumetric analysis of pelvic hematomas after blunt trauma using semi-automated seeded region growing segmentation: a method validation study. Abdom Radiol 41(11):2203–2208CrossRef
11.
go back to reference Battey TW, Dreizin D, Bodanapally UK, Wnorowski A, Issa G, Iacco A, Chiu W (2019) A comparison of segmented abdominopelvic fluid volumes with conventional CT signs of abdominal compartment syndrome in a trauma population. Abdom Radiol 44(7):2648–2655CrossRef Battey TW, Dreizin D, Bodanapally UK, Wnorowski A, Issa G, Iacco A, Chiu W (2019) A comparison of segmented abdominopelvic fluid volumes with conventional CT signs of abdominal compartment syndrome in a trauma population. Abdom Radiol 44(7):2648–2655CrossRef
12.
go back to reference Moy MP, Levsky JM, Berko NS, Godelman A, Jain VR, Haramati LB (2013) A new, simple method for estimating pleural effusion size on CT scans. Chest 143(4):1054–1059CrossRefPubMed Moy MP, Levsky JM, Berko NS, Godelman A, Jain VR, Haramati LB (2013) A new, simple method for estimating pleural effusion size on CT scans. Chest 143(4):1054–1059CrossRefPubMed
13.
go back to reference Meyer DM (2007) Hemothorax related to trauma. Thorac Cardiovasc Surg 17(1):47–55 Meyer DM (2007) Hemothorax related to trauma. Thorac Cardiovasc Surg 17(1):47–55
14.
go back to reference Huang J-F, Hsu C-P, Fu C-Y, Yang C-HO, Cheng C-T, Liao C-H, Kuo I-M, Hsieh C-H (2021) Is massive hemothorax still an absolute indication for operation in blunt trauma? Injury 52(2):225–30CrossRefPubMed Huang J-F, Hsu C-P, Fu C-Y, Yang C-HO, Cheng C-T, Liao C-H, Kuo I-M, Hsieh C-H (2021) Is massive hemothorax still an absolute indication for operation in blunt trauma? Injury 52(2):225–30CrossRefPubMed
15.
go back to reference Ma H-S, Ma J-H, Xue F-L, Fu X-N, Zhang N (2016) Clinical analysis of thoracoscopic surgery combined with intraoperative autologous blood transfusion in the treatment of traumatic hemothorax. Chin J Traumatol 19(6):371–372CrossRefPubMedPubMedCentral Ma H-S, Ma J-H, Xue F-L, Fu X-N, Zhang N (2016) Clinical analysis of thoracoscopic surgery combined with intraoperative autologous blood transfusion in the treatment of traumatic hemothorax. Chin J Traumatol 19(6):371–372CrossRefPubMedPubMedCentral
16.
go back to reference Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425–433CrossRefPubMedPubMedCentral Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425–433CrossRefPubMedPubMedCentral
17.
go back to reference Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251CrossRefPubMed Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251CrossRefPubMed
18.
go back to reference Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: assessment of feasibility and comparison with subjective categorical estimation. Radiol: Artif Intell 2(6):e190220 Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: assessment of feasibility and comparison with subjective categorical estimation. Radiol: Artif Intell 2(6):e190220
19.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral
20.
go back to reference Mackenzie CF, Wang Y, Hu PF, Chen S-Y, Chen HH, Hagegeorge G, Stansbury LG, Shackelford S, Group OS (2014) Automated prediction of early blood transfusion and mortality in trauma patients. J Trauma Acute Care Surg 76(6):1379–85CrossRefPubMed Mackenzie CF, Wang Y, Hu PF, Chen S-Y, Chen HH, Hagegeorge G, Stansbury LG, Shackelford S, Group OS (2014) Automated prediction of early blood transfusion and mortality in trauma patients. J Trauma Acute Care Surg 76(6):1379–85CrossRefPubMed
22.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
23.
go back to reference Fang X, Yan P (2020) Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans Med Imaging 39(11):3619–3629CrossRefPubMedPubMedCentral Fang X, Yan P (2020) Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans Med Imaging 39(11):3619–3629CrossRefPubMedPubMedCentral
24.
go back to reference Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G, McLenithan A, Morrison JJ (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol (NY) 46(6):2556–2566. https://doi.org/10.1007/s00261-020-02892-x Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G, McLenithan A, Morrison JJ (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol (NY) 46(6):2556–2566. https://​doi.​org/​10.​1007/​s00261-020-02892-x
25.
go back to reference Zhou Y, Dreizin D, Li Y, Zhang Z, Wang Y, Yuille A (2019) Multi-scale attentional network for multi-focal segmentation of active bleed after pelvic fractures. In International Workshop on Machine Learning in Medical Imaging. Springer, Cham, pp 461–469 Zhou Y, Dreizin D, Li Y, Zhang Z, Wang Y, Yuille A (2019) Multi-scale attentional network for multi-focal segmentation of active bleed after pelvic fractures. In International Workshop on Machine Learning in Medical Imaging. Springer, Cham, pp 461–469
27.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed
28.
go back to reference Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131CrossRefPubMed Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131CrossRefPubMed
29.
go back to reference Maier-Hein L, Reinke A, Christodoulou E, Glocker B, Godau P, Isensee F, Kleesiek J, Kozubek M, Reyes M, Riegler MA (2022) Metrics reloaded: pitfalls and recommendations for image analysis validation. arXiv preprint arXiv:2206.01653 Maier-Hein L, Reinke A, Christodoulou E, Glocker B, Godau P, Isensee F, Kleesiek J, Kozubek M, Reyes M, Riegler MA (2022) Metrics reloaded: pitfalls and recommendations for image analysis validation. arXiv preprint arXiv:2206.01653
30.
go back to reference Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, Guimaraes AR, Filice R, Zhang Z, Sullivan DC (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24(1):9–26CrossRefPubMed Kessler LG, Barnhart HX, Buckler AJ, Choudhury KR, Kondratovich MV, Toledano A, Guimaraes AR, Filice R, Zhang Z, Sullivan DC (2015) The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Stat Methods Med Res 24(1):9–26CrossRefPubMed
31.
go back to reference Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 227(3):617–628CrossRefPubMed Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 227(3):617–628CrossRefPubMed
32.
go back to reference Hunter TB, Taljanovic MS, Krupinski E, Ovitt T, Stubbs AY (2007) Academic radiologists’ on-call and late-evening duties. J Am Coll Radiol 4(10):716–719CrossRefPubMed Hunter TB, Taljanovic MS, Krupinski E, Ovitt T, Stubbs AY (2007) Academic radiologists’ on-call and late-evening duties. J Am Coll Radiol 4(10):716–719CrossRefPubMed
33.
go back to reference Brant-Zawadzki MN (2007) Special focus—outsourcing after hours radiology: one point of view—outsourcing night call. J Am Coll Radiol 4(10):672–674CrossRefPubMed Brant-Zawadzki MN (2007) Special focus—outsourcing after hours radiology: one point of view—outsourcing night call. J Am Coll Radiol 4(10):672–674CrossRefPubMed
34.
go back to reference Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383CrossRefPubMed Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383CrossRefPubMed
35.
go back to reference Dreizin D, Bodanapally U, Boscak A, Tirada N, Issa G, Nascone JW, Bivona L, Mascarenhas D, O’Toole RV, Nixon E (2018) CT prediction model for major arterial injury after blunt pelvic ring disruption. Radiology 287(3):1061–1069CrossRefPubMed Dreizin D, Bodanapally U, Boscak A, Tirada N, Issa G, Nascone JW, Bivona L, Mascarenhas D, O’Toole RV, Nixon E (2018) CT prediction model for major arterial injury after blunt pelvic ring disruption. Radiology 287(3):1061–1069CrossRefPubMed
36.
go back to reference Borror W, Gaski GE, Steenburg S (2019) Abdominopelvic bleed rate on admission CT correlates with mortality and transfusion needs in the setting of blunt pelvic fractures: a single institution pilot study. Emerg Radiol 26(1):37–44CrossRefPubMed Borror W, Gaski GE, Steenburg S (2019) Abdominopelvic bleed rate on admission CT correlates with mortality and transfusion needs in the setting of blunt pelvic fractures: a single institution pilot study. Emerg Radiol 26(1):37–44CrossRefPubMed
38.
go back to reference Miller PR, Croce MA, Bee TK, Qaisi WG, Smith CP, Collins GL, Fabian TC (2001) ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J Trauma Acute Care Surg 51(2):223–230CrossRef Miller PR, Croce MA, Bee TK, Qaisi WG, Smith CP, Collins GL, Fabian TC (2001) ARDS after pulmonary contusion: accurate measurement of contusion volume identifies high-risk patients. J Trauma Acute Care Surg 51(2):223–230CrossRef
39.
go back to reference Laughlin B, Chan A, Tai WA, Moftakhar P (2019) RAPID automated CT perfusion in clinical practice. Pract Neurol 2019:41–55 Laughlin B, Chan A, Tai WA, Moftakhar P (2019) RAPID automated CT perfusion in clinical practice. Pract Neurol 2019:41–55
40.
go back to reference Zhang T, Song Z, Yang J, Zhang X, Wei J (2021) Cerebral hemorrhage recognition based on Mask R-CNN network. Sens Imaging 22(1):1–16CrossRef Zhang T, Song Z, Yang J, Zhang X, Wei J (2021) Cerebral hemorrhage recognition based on Mask R-CNN network. Sens Imaging 22(1):1–16CrossRef
41.
go back to reference Zapaishchykova A, Dreizin D, Li Z, Wu JY, Faghihroohi S, Unberath M (2021) An interpretable approach to automated severity scoring in pelvic trauma. In International Conference on Medical Image Computing and Computer-Assisted Interventio. Springer, Cham, pp 424–433 Zapaishchykova A, Dreizin D, Li Z, Wu JY, Faghihroohi S, Unberath M (2021) An interpretable approach to automated severity scoring in pelvic trauma. In International Conference on Medical Image Computing and Computer-Assisted Interventio. Springer, Cham, pp 424–433
42.
go back to reference Chen H, Gomez C, Huang C-M, Unberath M (2021) INTRPRT: a systematic review of and guidelines for designing and validating transparent AI in medical image analysis. arXiv preprint arXiv:2112.12596 Chen H, Gomez C, Huang C-M, Unberath M (2021) INTRPRT: a systematic review of and guidelines for designing and validating transparent AI in medical image analysis. arXiv preprint arXiv:2112.12596
43.
go back to reference Vlontzos A, Rueckert D, Kainz B (2022) A review of causality for learning algorithms in medical image analysis. arXiv preprint arXiv:2206.05498 Vlontzos A, Rueckert D, Kainz B (2022) A review of causality for learning algorithms in medical image analysis. arXiv preprint arXiv:2206.05498
Metadata
Title
A pilot study of deep learning-based CT volumetry for traumatic hemothorax
Authors
David Dreizin
Bryan Nixon
Jiazhen Hu
Benjamin Albert
Chang Yan
Gary Yang
Haomin Chen
Yuanyuan Liang
Nahye Kim
Jean Jeudy
Guang Li
Elana B. Smith
Mathias Unberath
Publication date
16-08-2022
Publisher
Springer International Publishing
Published in
Emergency Radiology / Issue 6/2022
Print ISSN: 1070-3004
Electronic ISSN: 1438-1435
DOI
https://doi.org/10.1007/s10140-022-02087-5

Other articles of this Issue 6/2022

Emergency Radiology 6/2022 Go to the issue