Skip to main content
Top
Published in: Seminars in Immunopathology 6/2014

01-11-2014 | Review

The use of microRNA by human viruses: lessons from NK cells and HCMV infection

Authors: Tal Goldberger, Ofer Mandelboim

Published in: Seminars in Immunopathology | Issue 6/2014

Login to get access

Abstract

Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its “multitasking” microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Literature
1.
go back to reference Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMed Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117PubMed
2.
go back to reference Kiessling R, Klein E, Pross H et al (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121PubMed Kiessling R, Klein E, Pross H et al (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121PubMed
3.
go back to reference Robertson MJ, Caligiuri MA, Manley TJ et al (1990) Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 145:3194–3201PubMed Robertson MJ, Caligiuri MA, Manley TJ et al (1990) Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 145:3194–3201PubMed
4.
go back to reference Sivori S, Vitale M, Morelli L et al (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136PubMedPubMedCentral Sivori S, Vitale M, Morelli L et al (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136PubMedPubMedCentral
6.
go back to reference Galy A, Travis M, Cen D et al (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473PubMed Galy A, Travis M, Cen D et al (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473PubMed
7.
go back to reference Seaman WE, Gindhart TD, Greenspan JS et al (1979) Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122:2541–2547PubMed Seaman WE, Gindhart TD, Greenspan JS et al (1979) Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122:2541–2547PubMed
8.
go back to reference Kumar V, Ben-Ezra J, Bennett M et al (1979) Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 123:1832–1838PubMed Kumar V, Ben-Ezra J, Bennett M et al (1979) Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 123:1832–1838PubMed
9.
go back to reference Yu J, Freud AG, Caligiuri MA (2013) Location and cellular stages of natural killer cell development. Trends Immunol 34:573–582PubMed Yu J, Freud AG, Caligiuri MA (2013) Location and cellular stages of natural killer cell development. Trends Immunol 34:573–582PubMed
10.
go back to reference Beziat V, Liu LL, Malmberg JA et al (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688PubMedPubMedCentral Beziat V, Liu LL, Malmberg JA et al (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688PubMedPubMedCentral
11.
go back to reference Della Chiesa M, Falco M, Muccio L et al (2013) Impact of HCMV infection on NK cell development and function after HSCT. Front Immunol 4:458PubMedPubMedCentral Della Chiesa M, Falco M, Muccio L et al (2013) Impact of HCMV infection on NK cell development and function after HSCT. Front Immunol 4:458PubMedPubMedCentral
13.
go back to reference Siren J, Sareneva T, Pirhonen J et al (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85:2357–2364PubMed Siren J, Sareneva T, Pirhonen J et al (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85:2357–2364PubMed
14.
go back to reference Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189PubMed Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189PubMed
15.
go back to reference Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220PubMed Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220PubMed
16.
go back to reference Gur C, Porgador A, Elboim M et al (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11:121–128PubMed Gur C, Porgador A, Elboim M et al (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11:121–128PubMed
17.
go back to reference Gur C, Enk J, Kassem SA et al (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187:3096–3103PubMed Gur C, Enk J, Kassem SA et al (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187:3096–3103PubMed
18.
go back to reference Gur C, Enk J, Weitman E et al (2013) The expression of the beta cell-derived autoimmune ligand for the killer receptor nkp46 is attenuated in type 2 diabetes. PLoS One 8:e74033PubMedPubMedCentral Gur C, Enk J, Weitman E et al (2013) The expression of the beta cell-derived autoimmune ligand for the killer receptor nkp46 is attenuated in type 2 diabetes. PLoS One 8:e74033PubMedPubMedCentral
19.
go back to reference Deniz G, van de Veen W, Akdis M (2013) Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol 132:527–535PubMed Deniz G, van de Veen W, Akdis M (2013) Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol 132:527–535PubMed
20.
go back to reference Ghadially H, Horani A, Glasner A et al (2013) NKp46 regulates allergic responses. Eur J Immunol 43:3006–3016PubMed Ghadially H, Horani A, Glasner A et al (2013) NKp46 regulates allergic responses. Eur J Immunol 43:3006–3016PubMed
21.
go back to reference Hsieh CL, Obara H, Ogura Y et al (2002) NK cells and transplantation. Transpl Immunol 9:111–114PubMed Hsieh CL, Obara H, Ogura Y et al (2002) NK cells and transplantation. Transpl Immunol 9:111–114PubMed
22.
go back to reference Kroemer A, Edtinger K, Li XC (2008) The innate natural killer cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 13:339–343PubMed Kroemer A, Edtinger K, Li XC (2008) The innate natural killer cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 13:339–343PubMed
23.
go back to reference Uharek L, Glass B, Gaska T et al (1993) Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model. Bone Marrow Transplant 12(Suppl 3):S57–S60PubMed Uharek L, Glass B, Gaska T et al (1993) Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model. Bone Marrow Transplant 12(Suppl 3):S57–S60PubMed
24.
go back to reference Hanna J, Goldman-Wohl D, Hamani Y et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12:1065–1074PubMed Hanna J, Goldman-Wohl D, Hamani Y et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12:1065–1074PubMed
25.
go back to reference Manaster I, Mizrahi S, Goldman-Wohl D et al (2008) Endometrial NK cells are special immature cells that await pregnancy. J Immunol 181:1869–1876PubMed Manaster I, Mizrahi S, Goldman-Wohl D et al (2008) Endometrial NK cells are special immature cells that await pregnancy. J Immunol 181:1869–1876PubMed
26.
27.
go back to reference Orange JS, Ramesh N, Remold-O’Donnell E et al (2002) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A 99:11351–11356PubMedPubMedCentral Orange JS, Ramesh N, Remold-O’Donnell E et al (2002) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A 99:11351–11356PubMedPubMedCentral
28.
go back to reference Oshimi Y, Oda S, Honda Y et al (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157:2909–2915PubMed Oshimi Y, Oda S, Honda Y et al (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157:2909–2915PubMed
29.
go back to reference Zamai L, Ahmad M, Bennett IM et al (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380PubMedPubMedCentral Zamai L, Ahmad M, Bennett IM et al (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380PubMedPubMedCentral
30.
go back to reference Spaggiari GM, Carosio R, Pende D et al (2001) NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur J Immunol 31:1656–1665PubMed Spaggiari GM, Carosio R, Pende D et al (2001) NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur J Immunol 31:1656–1665PubMed
31.
go back to reference Zitvogel L, Terme M, Borg C et al (2006) Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 298:157–174PubMed Zitvogel L, Terme M, Borg C et al (2006) Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 298:157–174PubMed
32.
go back to reference Crome SQ, Lang PA, Lang KS et al (2013) Natural killer cells regulate diverse T cell responses. Trends Immunol 34:342–349PubMed Crome SQ, Lang PA, Lang KS et al (2013) Natural killer cells regulate diverse T cell responses. Trends Immunol 34:342–349PubMed
33.
go back to reference Zingoni A, Ardolino M, Santoni A et al (2012) NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Front Immunol 3:408PubMedPubMedCentral Zingoni A, Ardolino M, Santoni A et al (2012) NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Front Immunol 3:408PubMedPubMedCentral
34.
go back to reference Moretta L, Bottino C, Pende D et al (2002) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32:1205–1211PubMed Moretta L, Bottino C, Pende D et al (2002) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32:1205–1211PubMed
35.
go back to reference Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251PubMed Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251PubMed
36.
go back to reference Middleton D, Curran M, Maxwell L (2002) Natural killer cells and their receptors. Transpl Immunol 10:147–164PubMed Middleton D, Curran M, Maxwell L (2002) Natural killer cells and their receptors. Transpl Immunol 10:147–164PubMed
38.
go back to reference Vitale M, Castriconi R, Parolini S et al (1999) The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. Int Immunol 11:29–35PubMed Vitale M, Castriconi R, Parolini S et al (1999) The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. Int Immunol 11:29–35PubMed
39.
go back to reference O’Callaghan CA (2000) Molecular basis of human natural killer cell recognition of HLA-E (human leucocyte antigen-E) and its relevance to clearance of pathogen-infected and tumour cells. Clin Sci (Lond) 99:9–17 O’Callaghan CA (2000) Molecular basis of human natural killer cell recognition of HLA-E (human leucocyte antigen-E) and its relevance to clearance of pathogen-infected and tumour cells. Clin Sci (Lond) 99:9–17
40.
go back to reference Braud VM, Allan DS, Wilson D et al (1998) TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8:1–10PubMed Braud VM, Allan DS, Wilson D et al (1998) TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8:1–10PubMed
41.
go back to reference O’Callaghan CA, Bell JI (1998) Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 163:129–138PubMed O’Callaghan CA, Bell JI (1998) Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 163:129–138PubMed
42.
go back to reference Carretero M, Cantoni C, Bellon T et al (1997) The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 27:563–567PubMed Carretero M, Cantoni C, Bellon T et al (1997) The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 27:563–567PubMed
43.
go back to reference Lazetic S, Chang C, Houchins JP et al (1996) Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 157:4741–4745PubMed Lazetic S, Chang C, Houchins JP et al (1996) Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 157:4741–4745PubMed
44.
go back to reference Stanietsky N, Simic H, Arapovic J et al (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106:17858–17863PubMedPubMedCentral Stanietsky N, Simic H, Arapovic J et al (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106:17858–17863PubMedPubMedCentral
45.
go back to reference Lankry D, Rovis TL, Jonjic S et al (2013) The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol 43:2151–2161PubMed Lankry D, Rovis TL, Jonjic S et al (2013) The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol 43:2151–2161PubMed
46.
go back to reference Markel G, Wolf D, Hanna J et al (2002) Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J Clin Invest 110:943–953PubMedPubMedCentral Markel G, Wolf D, Hanna J et al (2002) Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J Clin Invest 110:943–953PubMedPubMedCentral
47.
go back to reference Pende D, Parolini S, Pessino A et al (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516PubMedPubMedCentral Pende D, Parolini S, Pessino A et al (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516PubMedPubMedCentral
48.
go back to reference Vitale M, Bottino C, Sivori S et al (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072PubMedPubMedCentral Vitale M, Bottino C, Sivori S et al (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072PubMedPubMedCentral
49.
go back to reference Porgador A (2005) Natural cytotoxicity receptors: pattern recognition and involvement of carbohydrates. Sci World J 5:151–154 Porgador A (2005) Natural cytotoxicity receptors: pattern recognition and involvement of carbohydrates. Sci World J 5:151–154
50.
go back to reference Bottino C, Moretta L, Pende D et al (2004) Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 41:569–575PubMed Bottino C, Moretta L, Pende D et al (2004) Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 41:569–575PubMed
51.
go back to reference Carrega P, Pezzino G, Queirolo P et al (2009) Susceptibility of human melanoma cells to autologous natural killer (NK) cell killing: HLA-related effector mechanisms and role of unlicensed NK cells. PLoS One 4:e8132PubMedPubMedCentral Carrega P, Pezzino G, Queirolo P et al (2009) Susceptibility of human melanoma cells to autologous natural killer (NK) cell killing: HLA-related effector mechanisms and role of unlicensed NK cells. PLoS One 4:e8132PubMedPubMedCentral
52.
go back to reference Halfteck GG, Elboim M, Gur C et al (2009) Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol 182:2221–2230PubMed Halfteck GG, Elboim M, Gur C et al (2009) Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol 182:2221–2230PubMed
53.
go back to reference Baychelier F, Sennepin A, Ermonval M et al (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122:2935–2942PubMed Baychelier F, Sennepin A, Ermonval M et al (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122:2935–2942PubMed
54.
go back to reference Pogge von Strandmann E, Simhadri VR, von Tresckow B et al (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27:965–974PubMed Pogge von Strandmann E, Simhadri VR, von Tresckow B et al (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27:965–974PubMed
55.
go back to reference Brandt CS, Baratin M, Yi EC et al (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503PubMedPubMedCentral Brandt CS, Baratin M, Yi EC et al (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503PubMedPubMedCentral
56.
go back to reference Rosental B, Brusilovsky M, Hadad U et al (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187:5693–5702PubMedPubMedCentral Rosental B, Brusilovsky M, Hadad U et al (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187:5693–5702PubMedPubMedCentral
57.
go back to reference Ferlazzo G, Tsang ML, Moretta L et al (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351PubMedPubMedCentral Ferlazzo G, Tsang ML, Moretta L et al (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351PubMedPubMedCentral
58.
go back to reference Seidel E, Glasner A, Mandelboim O (2012) Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 69:3911–3920 Seidel E, Glasner A, Mandelboim O (2012) Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 69:3911–3920
59.
go back to reference Jarahian M, Fiedler M, Cohnen A et al (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7:e1002195PubMedPubMedCentral Jarahian M, Fiedler M, Cohnen A et al (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7:e1002195PubMedPubMedCentral
60.
go back to reference Arnon TI, Achdout H, Levi O et al (2005) Inhibition of the NKp30 activating receptor by pp 65 of human cytomegalovirus. Nat Immunol 6:515–523PubMed Arnon TI, Achdout H, Levi O et al (2005) Inhibition of the NKp30 activating receptor by pp 65 of human cytomegalovirus. Nat Immunol 6:515–523PubMed
61.
go back to reference Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMed Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729PubMed
62.
go back to reference Houchins JP, Yabe T, McSherry C et al (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1020PubMed Houchins JP, Yabe T, McSherry C et al (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1020PubMed
63.
go back to reference Wu J, Song Y, Bakker AB et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732PubMed Wu J, Song Y, Bakker AB et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732PubMed
64.
go back to reference Karimi M, Cao TM, Baker JA et al (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 175:7819–7828PubMed Karimi M, Cao TM, Baker JA et al (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 175:7819–7828PubMed
65.
go back to reference Raulet DH, Gasser S, Gowen BG et al (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441PubMed Raulet DH, Gasser S, Gowen BG et al (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441PubMed
66.
go back to reference Groh V, Rhinehart R, Secrist H et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884PubMedPubMedCentral Groh V, Rhinehart R, Secrist H et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884PubMedPubMedCentral
67.
go back to reference Lakshmikanth T, Burke S, Ali TH et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119:1251–1263PubMedPubMedCentral Lakshmikanth T, Burke S, Ali TH et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119:1251–1263PubMedPubMedCentral
68.
69.
go back to reference Falco M, Marcenaro E, Romeo E et al (2004) Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells. Eur J Immunol 34:1663–1672PubMed Falco M, Marcenaro E, Romeo E et al (2004) Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells. Eur J Immunol 34:1663–1672PubMed
70.
go back to reference Vitale M, Falco M, Castriconi R et al (2001) Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur J Immunol 31:233–242PubMed Vitale M, Falco M, Castriconi R et al (2001) Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur J Immunol 31:233–242PubMed
71.
go back to reference Mathew SO, Rao KK, Kim JR et al (2009) Functional role of human NK cell receptor 2B4 (CD244) isoforms. Eur J Immunol 39:1632–1641PubMed Mathew SO, Rao KK, Kim JR et al (2009) Functional role of human NK cell receptor 2B4 (CD244) isoforms. Eur J Immunol 39:1632–1641PubMed
72.
go back to reference Fuchs A, Cella M, Giurisato E et al (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998PubMed Fuchs A, Cella M, Giurisato E et al (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998PubMed
73.
go back to reference Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558PubMed Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558PubMed
74.
go back to reference Martin MP, Gao X, Lee JH et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434PubMed Martin MP, Gao X, Lee JH et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434PubMed
75.
go back to reference Martin MP, Qi Y, Gao X et al (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39:733–740PubMedPubMedCentral Martin MP, Qi Y, Gao X et al (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39:733–740PubMedPubMedCentral
76.
go back to reference Collins KL, Chen BK, Kalams SA et al (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401PubMed Collins KL, Chen BK, Kalams SA et al (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401PubMed
77.
go back to reference Cohen GB, Gandhi RT, Davis DM et al (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671PubMed Cohen GB, Gandhi RT, Davis DM et al (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671PubMed
78.
go back to reference Kiepiela P, Leslie AJ, Honeyborne I et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:769–775PubMed Kiepiela P, Leslie AJ, Honeyborne I et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:769–775PubMed
79.
go back to reference Arnon TI, Lev M, Katz G et al (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689PubMed Arnon TI, Lev M, Katz G et al (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689PubMed
80.
go back to reference Mandelboim O, Lieberman N, Lev M et al (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060PubMed Mandelboim O, Lieberman N, Lev M et al (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060PubMed
81.
go back to reference Gazit R, Gruda R, Elboim M et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523PubMed Gazit R, Gruda R, Elboim M et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523PubMed
82.
go back to reference Glasner A, Zurunic A, Meningher T et al (2012) Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS One 7:e36837PubMedPubMedCentral Glasner A, Zurunic A, Meningher T et al (2012) Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS One 7:e36837PubMedPubMedCentral
83.
go back to reference Moscona A (2005) Neuraminidase Inhibitors for Influenza. N Engl J Med 353:1363–1373PubMed Moscona A (2005) Neuraminidase Inhibitors for Influenza. N Engl J Med 353:1363–1373PubMed
84.
go back to reference Tamura D, Sugaya N, Ozawa M et al (2011) Frequency of drug-resistant viruses and virus shedding in pediatric influenza patients treated with neuraminidase inhibitors. Clin Infect Dis 52:432–437PubMedPubMedCentral Tamura D, Sugaya N, Ozawa M et al (2011) Frequency of drug-resistant viruses and virus shedding in pediatric influenza patients treated with neuraminidase inhibitors. Clin Infect Dis 52:432–437PubMedPubMedCentral
85.
go back to reference Bar-On Y, Glasner A, Meningher T et al (2013) Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses. Cell Rep 3:1044–1050PubMed Bar-On Y, Glasner A, Meningher T et al (2013) Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses. Cell Rep 3:1044–1050PubMed
86.
go back to reference Bar-On Y, Seidel E, Tsukerman P et al (2014) Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors. J Infect Dis. doi:10.1093/infdis/jiu094 Bar-On Y, Seidel E, Tsukerman P et al (2014) Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors. J Infect Dis. doi:10.​1093/​infdis/​jiu094
87.
go back to reference Ebell MH (2004) Epstein-Barr virus infectious mononucleosis. Am Fam Physician 70:1279–1287PubMed Ebell MH (2004) Epstein-Barr virus infectious mononucleosis. Am Fam Physician 70:1279–1287PubMed
88.
go back to reference Kutok JL, Wang F (2006) Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1:375–404PubMed Kutok JL, Wang F (2006) Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1:375–404PubMed
89.
go back to reference Parolini S, Bottino C, Falco M et al (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192:337–346PubMedPubMedCentral Parolini S, Bottino C, Falco M et al (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192:337–346PubMedPubMedCentral
90.
go back to reference Shaw RK, Issekutz AC, Fraser R et al (2012) Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood 119:4009–4012PubMedPubMedCentral Shaw RK, Issekutz AC, Fraser R et al (2012) Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood 119:4009–4012PubMedPubMedCentral
91.
go back to reference Nachmani D, Stern-Ginossar N, Sarid R et al (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5:376–385PubMed Nachmani D, Stern-Ginossar N, Sarid R et al (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5:376–385PubMed
92.
go back to reference Griffin BD, Gram AM, Mulder A et al (2013) EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J Immunol 190:1672–1684PubMedPubMedCentral Griffin BD, Gram AM, Mulder A et al (2013) EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J Immunol 190:1672–1684PubMedPubMedCentral
93.
go back to reference Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMed Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMed
94.
go back to reference Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101PubMed Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101PubMed
95.
96.
go back to reference Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMed Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419PubMed
97.
go back to reference Havens MA, Reich AA, Duelli DM et al (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640PubMedPubMedCentral Havens MA, Reich AA, Duelli DM et al (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640PubMedPubMedCentral
98.
go back to reference Wu Q, Song R, Ortogero N et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190PubMedPubMedCentral Wu Q, Song R, Ortogero N et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190PubMedPubMedCentral
99.
go back to reference Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167PubMed Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167PubMed
100.
go back to reference Gwizdek C, Ossareh-Nazari B, Brownawell AM et al (2004) Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 279:884–891PubMed Gwizdek C, Ossareh-Nazari B, Brownawell AM et al (2004) Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 279:884–891PubMed
101.
go back to reference Redfern AD, Colley SM, Beveridge DJ et al (2013) RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 110:6536–6541PubMedPubMedCentral Redfern AD, Colley SM, Beveridge DJ et al (2013) RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 110:6536–6541PubMedPubMedCentral
102.
go back to reference Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMed Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMed
103.
go back to reference Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322PubMed Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322PubMed
104.
go back to reference Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMed Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMed
105.
go back to reference Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMed Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMed
107.
108.
go back to reference Stern-Ginossar N, Gur C, Biton M et al (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9:1065–1073PubMed Stern-Ginossar N, Gur C, Biton M et al (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9:1065–1073PubMed
110.
go back to reference Weller TH (1970) Review. Cytomegaloviruses: the difficult years. J Infect Dis 122:532–539PubMed Weller TH (1970) Review. Cytomegaloviruses: the difficult years. J Infect Dis 122:532–539PubMed
111.
go back to reference Ho M (2008) The history of cytomegalovirus and its diseases. Med Microbiol Immunol 197:65–73PubMed Ho M (2008) The history of cytomegalovirus and its diseases. Med Microbiol Immunol 197:65–73PubMed
112.
go back to reference Brooks GF (2013) Herpesviruses. In: Carroll KC (ed) Jawetz, Melnick, and Adelberg’s medical microbiology, McGraw-Hill, New York, p. 26e Brooks GF (2013) Herpesviruses. In: Carroll KC (ed) Jawetz, Melnick, and Adelberg’s medical microbiology, McGraw-Hill, New York, p. 26e
113.
go back to reference Engman ML, Malm G, Engstrom L et al (2008) Congenital CMV infection: prevalence in newborns and the impact on hearing deficit. Scand J Infect Dis 40:935–942PubMed Engman ML, Malm G, Engstrom L et al (2008) Congenital CMV infection: prevalence in newborns and the impact on hearing deficit. Scand J Infect Dis 40:935–942PubMed
114.
go back to reference Scheurer ME, Bondy ML, Aldape KD et al (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86PubMedPubMedCentral Scheurer ME, Bondy ML, Aldape KD et al (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86PubMedPubMedCentral
115.
go back to reference Bravender T (2010) Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc Med State Art Rev 21:251–264, ixPubMed Bravender T (2010) Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc Med State Art Rev 21:251–264, ixPubMed
116.
go back to reference Mamun Al M, Rahman S, Khan M (2009) Acute cytomegalovirus hepatitis in immunocompetent host. Kathmandu Univ Med J (KUMJ) 7:79–81 Mamun Al M, Rahman S, Khan M (2009) Acute cytomegalovirus hepatitis in immunocompetent host. Kathmandu Univ Med J (KUMJ) 7:79–81
117.
go back to reference Azad AK, Ahmed T, Chowdhury AJ et al (2008) Cytomegalovirus induced hepatitis in an immunocompetent host. Mymensingh Med J 17:S104–S106PubMed Azad AK, Ahmed T, Chowdhury AJ et al (2008) Cytomegalovirus induced hepatitis in an immunocompetent host. Mymensingh Med J 17:S104–S106PubMed
119.
go back to reference Cantoni N, Hirsch HH, Khanna N et al (2010) Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant 16:1309–1314PubMed Cantoni N, Hirsch HH, Khanna N et al (2010) Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant 16:1309–1314PubMed
120.
go back to reference Weekes MP, Tan SY, Poole E et al (2013) Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340:199–202PubMedPubMedCentral Weekes MP, Tan SY, Poole E et al (2013) Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340:199–202PubMedPubMedCentral
121.
go back to reference Compton T, Feire A (2007) Early events in human cytomegalovirus infection. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge Compton T, Feire A (2007) Early events in human cytomegalovirus infection. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge
122.
go back to reference Dolan A, Cunningham C, Hector RD et al (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312PubMed Dolan A, Cunningham C, Hector RD et al (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312PubMed
123.
go back to reference Pignatelli S, Dal Monte P, Rossini G et al (2004) Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 14:383–410PubMed Pignatelli S, Dal Monte P, Rossini G et al (2004) Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 14:383–410PubMed
124.
go back to reference Cha TA, Tom E, Kemble GW et al (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83PubMedPubMedCentral Cha TA, Tom E, Kemble GW et al (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83PubMedPubMedCentral
125.
126.
go back to reference Isaacson MK, Compton T (2009) Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol 83:3891–3903PubMedPubMedCentral Isaacson MK, Compton T (2009) Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol 83:3891–3903PubMedPubMedCentral
127.
go back to reference Pietropaolo RL, Compton T (1997) Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 71:9803–9807PubMedPubMedCentral Pietropaolo RL, Compton T (1997) Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 71:9803–9807PubMedPubMedCentral
128.
go back to reference Pietropaolo R, Compton T (1999) Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J Gen Virol 80(Pt 7):1807–1816PubMed Pietropaolo R, Compton T (1999) Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J Gen Virol 80(Pt 7):1807–1816PubMed
129.
go back to reference Wille PT, Wisner TW, Ryckman B et al (2013) Human cytomegalovirus (HCMV) glycoprotein gB promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. MBio 4:e00332–00313PubMedPubMedCentral Wille PT, Wisner TW, Ryckman B et al (2013) Human cytomegalovirus (HCMV) glycoprotein gB promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. MBio 4:e00332–00313PubMedPubMedCentral
130.
go back to reference Ryckman BJ, Jarvis MA, Drummond DD et al (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80:710–722PubMedPubMedCentral Ryckman BJ, Jarvis MA, Drummond DD et al (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80:710–722PubMedPubMedCentral
131.
go back to reference Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 95:3937–3942PubMedPubMedCentral Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 95:3937–3942PubMedPubMedCentral
132.
go back to reference Taylor-Wiedeman J, Sissons JG, Borysiewicz LK et al (1991) Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72(Pt 9):2059–2064PubMed Taylor-Wiedeman J, Sissons JG, Borysiewicz LK et al (1991) Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72(Pt 9):2059–2064PubMed
133.
go back to reference Reeves MB, MacAry PA, Lehner PJ et al (2005) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102:4140–4145PubMedPubMedCentral Reeves MB, MacAry PA, Lehner PJ et al (2005) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102:4140–4145PubMedPubMedCentral
134.
go back to reference Sinclair J (2010) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta 1799:286–295PubMed Sinclair J (2010) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta 1799:286–295PubMed
135.
go back to reference Davison AJ, Dolan A, Akter P et al (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28PubMed Davison AJ, Dolan A, Akter P et al (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28PubMed
136.
go back to reference Murphy E, Rigoutsos I, Shibuya T et al (2003) Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100:13585–13590PubMedPubMedCentral Murphy E, Rigoutsos I, Shibuya T et al (2003) Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100:13585–13590PubMedPubMedCentral
137.
go back to reference Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338:1088–1093PubMed Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338:1088–1093PubMed
138.
go back to reference Rolle A, Mousavi-Jazi M, Eriksson M et al (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908PubMed Rolle A, Mousavi-Jazi M, Eriksson M et al (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908PubMed
139.
go back to reference Eagle RA, Traherne JA, Hair JR et al (2009) ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 39:3207–3216PubMed Eagle RA, Traherne JA, Hair JR et al (2009) ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 39:3207–3216PubMed
140.
go back to reference Wu J, Chalupny NJ, Manley TJ et al (2003) Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol 170:4196–4200PubMed Wu J, Chalupny NJ, Manley TJ et al (2003) Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol 170:4196–4200PubMed
141.
go back to reference Ashiru O, Bennett NJ, Boyle LH et al (2009) NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 83:12345–12354PubMedPubMedCentral Ashiru O, Bennett NJ, Boyle LH et al (2009) NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 83:12345–12354PubMedPubMedCentral
142.
go back to reference Fielding CA, Aicheler R, Stanton RJ et al (2014) Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 10:e1004058PubMedPubMedCentral Fielding CA, Aicheler R, Stanton RJ et al (2014) Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 10:e1004058PubMedPubMedCentral
143.
go back to reference Bennett NJ, Ashiru O, Morgan FJ et al (2010) Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus. J Immunol 185:1093–1102PubMed Bennett NJ, Ashiru O, Morgan FJ et al (2010) Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus. J Immunol 185:1093–1102PubMed
144.
go back to reference Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396PubMedPubMedCentral Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396PubMedPubMedCentral
145.
go back to reference van der Wal FJ, Kikkert M, Wiertz E (2002) The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol 269:37–55PubMed van der Wal FJ, Kikkert M, Wiertz E (2002) The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol 269:37–55PubMed
146.
go back to reference Noriega VM, Hesse J, Gardner TJ et al (2012) Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 51:245–253PubMedPubMedCentral Noriega VM, Hesse J, Gardner TJ et al (2012) Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 51:245–253PubMedPubMedCentral
147.
go back to reference Furman MH, Dey N, Tortorella D et al (2002) The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 76:11753–11756PubMedPubMedCentral Furman MH, Dey N, Tortorella D et al (2002) The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 76:11753–11756PubMedPubMedCentral
148.
go back to reference Trgovcich J, Cebulla C, Zimmerman P et al (2006) Human cytomegalovirus protein pp 71 disrupts major histocompatibility complex class I cell surface expression. J Virol 80:951–963PubMedPubMedCentral Trgovcich J, Cebulla C, Zimmerman P et al (2006) Human cytomegalovirus protein pp 71 disrupts major histocompatibility complex class I cell surface expression. J Virol 80:951–963PubMedPubMedCentral
149.
go back to reference Chapman TL, Heikeman AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613PubMed Chapman TL, Heikeman AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613PubMed
150.
go back to reference Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMed Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMed
151.
go back to reference Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMed Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMed
152.
go back to reference Cui C, Griffiths A, Li G et al (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508PubMedPubMedCentral Cui C, Griffiths A, Li G et al (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508PubMedPubMedCentral
153.
go back to reference Sun L, Li Q (2012) The miRNAs of Herpes Simplex Virus (HSV). Virol Sin 27:332–337 Sun L, Li Q (2012) The miRNAs of Herpes Simplex Virus (HSV). Virol Sin 27:332–337
155.
go back to reference Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedPubMedCentral Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedPubMedCentral
156.
go back to reference Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381PubMed Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381PubMed
157.
go back to reference Bauman Y, Nachmani D, Vitenshtein A et al (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9:93–102PubMed Bauman Y, Nachmani D, Vitenshtein A et al (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9:93–102PubMed
158.
go back to reference Kim S, Lee S, Shin J et al (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12:984–991PubMedPubMedCentral Kim S, Lee S, Shin J et al (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12:984–991PubMedPubMedCentral
159.
go back to reference Tomasec P, Braud VM, Rickards C et al (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031PubMed Tomasec P, Braud VM, Rickards C et al (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031PubMed
160.
go back to reference Nachmani D, Zimmermann A, Oiknine Djian E et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10:e1003963PubMedPubMedCentral Nachmani D, Zimmermann A, Oiknine Djian E et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10:e1003963PubMedPubMedCentral
161.
go back to reference Maghazachi AA, al-Aoukaty A, Schall TJ (1994) C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol 153:4969–4977PubMed Maghazachi AA, al-Aoukaty A, Schall TJ (1994) C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol 153:4969–4977PubMed
162.
go back to reference Loetscher P, Seitz M, Clark-Lewis I et al (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327PubMed Loetscher P, Seitz M, Clark-Lewis I et al (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327PubMed
163.
go back to reference Taylor RT, Bresnahan WA (2006) Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 80:920–928PubMedPubMedCentral Taylor RT, Bresnahan WA (2006) Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 80:920–928PubMedPubMedCentral
164.
go back to reference Bodaghi B, Jones TR, Zipeto D et al (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866PubMedPubMedCentral Bodaghi B, Jones TR, Zipeto D et al (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866PubMedPubMedCentral
165.
go back to reference Wang D, Bresnahan W, Shenk T (2004) Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A 101:16642–16647PubMedPubMedCentral Wang D, Bresnahan W, Shenk T (2004) Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A 101:16642–16647PubMedPubMedCentral
166.
go back to reference Kim Y, Lee S, Kim S et al (2012) Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog 8:e1002577PubMedPubMedCentral Kim Y, Lee S, Kim S et al (2012) Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog 8:e1002577PubMedPubMedCentral
167.
go back to reference Sarras H, Alizadeh Azami S, McPherson JP (2010) In search of a function for BCLAF1. Sci World J 10:1450–1461 Sarras H, Alizadeh Azami S, McPherson JP (2010) In search of a function for BCLAF1. Sci World J 10:1450–1461
168.
go back to reference Lee YY, Yu YB, Gunawardena HP et al (2012) BCLAF1 is a radiation-induced H2AX-interacting partner involved in gammaH2AX-mediated regulation of apoptosis and DNA repair. Cell Death Dis 3:e359PubMedPubMedCentral Lee YY, Yu YB, Gunawardena HP et al (2012) BCLAF1 is a radiation-induced H2AX-interacting partner involved in gammaH2AX-mediated regulation of apoptosis and DNA repair. Cell Death Dis 3:e359PubMedPubMedCentral
169.
go back to reference Lee SH, Kalejta RF, Kerry J et al (2012) BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109:9575–9580PubMedPubMedCentral Lee SH, Kalejta RF, Kerry J et al (2012) BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109:9575–9580PubMedPubMedCentral
170.
go back to reference Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134PubMedPubMedCentral Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134PubMedPubMedCentral
171.
go back to reference Park MH, Song MJ, Cho MC et al (2012) Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology 135:63–72PubMedPubMedCentral Park MH, Song MJ, Cho MC et al (2012) Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology 135:63–72PubMedPubMedCentral
172.
go back to reference Cheon S, Lee JH, Park S et al (2011) Overexpression of IL-32alpha increases natural killer cell-mediated killing through up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression in human chronic myeloid leukemia cells. J Biol Chem 286:12049–12055PubMedPubMedCentral Cheon S, Lee JH, Park S et al (2011) Overexpression of IL-32alpha increases natural killer cell-mediated killing through up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression in human chronic myeloid leukemia cells. J Biol Chem 286:12049–12055PubMedPubMedCentral
173.
go back to reference Huang Y, Qi Y, Ma Y et al (2013) The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 10:51PubMedPubMedCentral Huang Y, Qi Y, Ma Y et al (2013) The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 10:51PubMedPubMedCentral
174.
go back to reference Hook LM, Grey F, Grabski R et al (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15:363–373PubMed Hook LM, Grey F, Grabski R et al (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15:363–373PubMed
175.
go back to reference Pavelin J, Reynolds N, Chiweshe S et al (2013) Systematic microRNA analysis identifies ATP6V0C as an essential host factor for human cytomegalovirus replication. PLoS Pathog 9:e1003820PubMedPubMedCentral Pavelin J, Reynolds N, Chiweshe S et al (2013) Systematic microRNA analysis identifies ATP6V0C as an essential host factor for human cytomegalovirus replication. PLoS Pathog 9:e1003820PubMedPubMedCentral
176.
go back to reference Grey F, Tirabassi R, Meyers H et al (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967PubMedPubMedCentral Grey F, Tirabassi R, Meyers H et al (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967PubMedPubMedCentral
177.
go back to reference Qi M, Qi Y, Ma Y et al (2013) Over-expression of human cytomegalovirus miR-US25-2-3p downregulates eIF4A1 and inhibits HCMV replication. FEBS Lett 587:2266–2271PubMed Qi M, Qi Y, Ma Y et al (2013) Over-expression of human cytomegalovirus miR-US25-2-3p downregulates eIF4A1 and inhibits HCMV replication. FEBS Lett 587:2266–2271PubMed
178.
go back to reference Stern-Ginossar N, Saleh N, Goldberg MD et al (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83:10684–10693PubMedPubMedCentral Stern-Ginossar N, Saleh N, Goldberg MD et al (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83:10684–10693PubMedPubMedCentral
179.
go back to reference Grey F, Meyers H, White EA et al (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163PubMedPubMedCentral Grey F, Meyers H, White EA et al (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163PubMedPubMedCentral
180.
go back to reference Li S, Zhu J, Zhang W et al (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–184PubMed Li S, Zhu J, Zhang W et al (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–184PubMed
181.
go back to reference Yamamoto T, Suzuki S, Radsak K et al (1998) The UL112/113 gene products of human cytomegalovirus which colocalize with viral DNA in infected cell nuclei are related to efficient viral DNA replication. Virus Res 56:107–114PubMed Yamamoto T, Suzuki S, Radsak K et al (1998) The UL112/113 gene products of human cytomegalovirus which colocalize with viral DNA in infected cell nuclei are related to efficient viral DNA replication. Virus Res 56:107–114PubMed
182.
go back to reference Wells R, Stensland L, Vieira J (2009) The human cytomegalovirus UL112-113 locus can activate the full Kaposi’s sarcoma-associated herpesvirus lytic replication cycle. J Virol 83:4695–4699PubMedPubMedCentral Wells R, Stensland L, Vieira J (2009) The human cytomegalovirus UL112-113 locus can activate the full Kaposi’s sarcoma-associated herpesvirus lytic replication cycle. J Virol 83:4695–4699PubMedPubMedCentral
183.
go back to reference Lee S, Song J, Kim S et al (2013) Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13:678–690PubMed Lee S, Song J, Kim S et al (2013) Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13:678–690PubMed
184.
go back to reference Wang FZ, Weber F, Croce C et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074PubMedPubMedCentral Wang FZ, Weber F, Croce C et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074PubMedPubMedCentral
185.
go back to reference Poole E, McGregor Dallas SR, Colston J et al (2011) Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34(+) progenitors. J Gen Virol 92:1539–1549PubMed Poole E, McGregor Dallas SR, Colston J et al (2011) Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34(+) progenitors. J Gen Virol 92:1539–1549PubMed
186.
187.
go back to reference Huang HC, Yu HR, Huang LT et al (2012) miRNA-125b regulates TNF-alpha production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol 92:171–182PubMed Huang HC, Yu HR, Huang LT et al (2012) miRNA-125b regulates TNF-alpha production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol 92:171–182PubMed
188.
go back to reference Santhakumar D, Forster T, Laqtom NN et al (2010) Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107:13830–13835PubMedPubMedCentral Santhakumar D, Forster T, Laqtom NN et al (2010) Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107:13830–13835PubMedPubMedCentral
189.
go back to reference Zhang S, Liu L, Wang R et al (2013) MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Arch Virol 158:2443–2452PubMed Zhang S, Liu L, Wang R et al (2013) MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Arch Virol 158:2443–2452PubMed
190.
go back to reference Zhang S, Liu L, Wang R et al (2013) MicroRNA-217 promotes angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PLoS One 8:e83620PubMedPubMedCentral Zhang S, Liu L, Wang R et al (2013) MicroRNA-217 promotes angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PLoS One 8:e83620PubMedPubMedCentral
191.
go back to reference Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532PubMed Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532PubMed
192.
193.
go back to reference Haneklaus M, Gerlic M, O’Neill LA et al (2013) miR-223: infection, inflammation and cancer. J Intern Med 274:215–226PubMed Haneklaus M, Gerlic M, O’Neill LA et al (2013) miR-223: infection, inflammation and cancer. J Intern Med 274:215–226PubMed
194.
go back to reference Fu M, Gao Y, Zhou Q et al (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536:272–278PubMed Fu M, Gao Y, Zhou Q et al (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536:272–278PubMed
195.
go back to reference Stark TJ, Arnold JD, Spector DH et al (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86:226–235PubMedPubMedCentral Stark TJ, Arnold JD, Spector DH et al (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86:226–235PubMedPubMedCentral
196.
go back to reference Xiong Y, Fang JH, Yun JP et al (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845PubMed Xiong Y, Fang JH, Yun JP et al (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845PubMed
197.
go back to reference Mott JL, Kobayashi S, Bronk SF et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140PubMedPubMedCentral Mott JL, Kobayashi S, Bronk SF et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140PubMedPubMedCentral
198.
go back to reference Li Y, Wang H, Tao K et al (2013) miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res 319:1094–1101PubMed Li Y, Wang H, Tao K et al (2013) miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res 319:1094–1101PubMed
199.
go back to reference O’Connor CM, Vanicek J, Murphy EA (2014) Host MicroRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol 88:5524–5532PubMed O’Connor CM, Vanicek J, Murphy EA (2014) Host MicroRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol 88:5524–5532PubMed
200.
go back to reference Dolken L, Pfeffer S, Koszinowski UH (2009) Cytomegalovirus microRNAs. Virus Genes 38:355–364PubMed Dolken L, Pfeffer S, Koszinowski UH (2009) Cytomegalovirus microRNAs. Virus Genes 38:355–364PubMed
Metadata
Title
The use of microRNA by human viruses: lessons from NK cells and HCMV infection
Authors
Tal Goldberger
Ofer Mandelboim
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 6/2014
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-014-0447-3

Other articles of this Issue 6/2014

Seminars in Immunopathology 6/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.