Skip to main content
Top
Published in: European Spine Journal 11/2011

01-11-2011 | Original Article

The use of BoneWelding® technology in spinal surgery: an experimental study in sheep

Authors: Dorothee Heidenreich, Jens D. Langhoff, Katja Nuss, Katharina Kluge, Käthi Kämpf, Katalin Zlinsky, Monika Hilbe, Jörg Mayer, Brigitte von Rechenberg

Published in: European Spine Journal | Issue 11/2011

Login to get access

Abstract

The innovative BoneWelding® technology, where ultrasound energy bonds bioresorbable implants to bone, was tested for its feasibility in spine surgery and its local thermal effects. The three tested concepts consisted of implementation of a resorbable plating system, two converging polymer pins and suture anchors to the cervical vertebral bodies. Bioresorbable polylactide implants (PLDLLA 70/30) were inserted ventrally into the third and fourth vertebral body of seven sheep, of which six were sacrificed at 2 months and one sheep immediately after temperature measurements during implant insertion. Polymer screws were used as controls. Qualitative, semi-quantitative histological, and quantitative histomorphometrical evaluation showed excellent anchorage of the implants, new mineralized bone at the implant-bone interface, no inflammatory cell reaction or thermal damage to the adjacent bone in response to the novel insertion technology. The application of two converging pins, parallel inserted polymer pins, or fusion of the implant to the polymer plates did not affect the overall excellent tissue tolerance of the technology. Temperature increase during insertion was noticed but never exceeded 47°C for less than 1 s. The BoneWelding® technology was proven to be safe and easy to apply.
Literature
1.
go back to reference Ferguson SJ, Weber U, von Rechenberg B, Mayer J (2006) Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance. J Biomed Mater Res B Appl Biomater 77:13–20PubMed Ferguson SJ, Weber U, von Rechenberg B, Mayer J (2006) Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance. J Biomed Mater Res B Appl Biomater 77:13–20PubMed
2.
go back to reference Eckelt U, Nitsche M, Muller A, Pilling E, Pinzer T, Roesner D (2007) Ultrasound aided pin fixation of biodegradable osteosynthetic materials in cranioplasty for infants with craniosynostosis. J Craniomaxillofac Surg 35:218–221PubMedCrossRef Eckelt U, Nitsche M, Muller A, Pilling E, Pinzer T, Roesner D (2007) Ultrasound aided pin fixation of biodegradable osteosynthetic materials in cranioplasty for infants with craniosynostosis. J Craniomaxillofac Surg 35:218–221PubMedCrossRef
3.
go back to reference Langhoff JD, Kuemmerle JM, Mayer J, Weber U, Berra M, Mueller JM, Kaestner SB, Zlinszky K, Auer JA, von Rechenberg B (2009) An ultrasound assisted anchoring technique (BoneWelding Technology) for fixation of implants to bone—a histological pilot study in sheep. Open Orthop J 3:40–47. doi:10.2174/1874325000903010040 PubMedCrossRef Langhoff JD, Kuemmerle JM, Mayer J, Weber U, Berra M, Mueller JM, Kaestner SB, Zlinszky K, Auer JA, von Rechenberg B (2009) An ultrasound assisted anchoring technique (BoneWelding Technology) for fixation of implants to bone—a histological pilot study in sheep. Open Orthop J 3:40–47. doi:10.​2174/​1874325000903010​040 PubMedCrossRef
4.
go back to reference Meissner H, Pilling E, Richter G, Koch R, Eckelt U, Reitemeier B (2008) Experimental investigations for mechanical joint strength following ultrasonically welded pin osteosynthesis. J Mater Sci Mater Med 19:2255–2259PubMedCrossRef Meissner H, Pilling E, Richter G, Koch R, Eckelt U, Reitemeier B (2008) Experimental investigations for mechanical joint strength following ultrasonically welded pin osteosynthesis. J Mater Sci Mater Med 19:2255–2259PubMedCrossRef
5.
go back to reference Pilling E, Mai R, Theissig F, Stadlinger B, Loukota R, Eckelt U (2007) An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep. Br J Oral Maxillofac Surg 45:447–450PubMedCrossRef Pilling E, Mai R, Theissig F, Stadlinger B, Loukota R, Eckelt U (2007) An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep. Br J Oral Maxillofac Surg 45:447–450PubMedCrossRef
6.
go back to reference Neff A, Muhlberger G, Karoglan M, Kolk A, Mittelmeier W, Scheruhn D, Horch HH, Kock S, Schieferstein H (2004) Stability of osteosyntheses for condylar head fractures in the clinic and biomechanical simulation. Mund Kiefer Gesichtschir 8:63–74PubMedCrossRef Neff A, Muhlberger G, Karoglan M, Kolk A, Mittelmeier W, Scheruhn D, Horch HH, Kock S, Schieferstein H (2004) Stability of osteosyntheses for condylar head fractures in the clinic and biomechanical simulation. Mund Kiefer Gesichtschir 8:63–74PubMedCrossRef
7.
go back to reference Ricalde P, Engroff SL, Von Fraunhofer JA, Posnick JC (2005) Strength analysis of titanium and resorbable internal fixation in a mandibulotomy model. J Oral Maxillofac Surg 63:1180–1183PubMedCrossRef Ricalde P, Engroff SL, Von Fraunhofer JA, Posnick JC (2005) Strength analysis of titanium and resorbable internal fixation in a mandibulotomy model. J Oral Maxillofac Surg 63:1180–1183PubMedCrossRef
8.
go back to reference Bell RB, Kindsfater CS (2006) The use of biodegradable plates and screws to stabilize facial fractures. J Oral Maxillofac Surg 64:31–39PubMed Bell RB, Kindsfater CS (2006) The use of biodegradable plates and screws to stabilize facial fractures. J Oral Maxillofac Surg 64:31–39PubMed
9.
go back to reference Mai R, Lauer G, Pilling E, Jung R, Leonhardt H, Proff P, Stadlinger B, Pradel W, Eckelt U, Fanghanel J, Gedrange T (2007) Bone welding—a histological evaluation in the jaw. Ann Anat 189:350–355PubMedCrossRef Mai R, Lauer G, Pilling E, Jung R, Leonhardt H, Proff P, Stadlinger B, Pradel W, Eckelt U, Fanghanel J, Gedrange T (2007) Bone welding—a histological evaluation in the jaw. Ann Anat 189:350–355PubMedCrossRef
10.
go back to reference Reichwein A, Poeschl P, Seemann R, Schicho K, Ewers R (2007) First Report of an Innovative Angle Stable, Ultrasonic-Guided, Resorbable Osteosynthesis System for the Treatment of Midfacial Trauma. J Oral Maxillofac Surg 65:33e33 Reichwein A, Poeschl P, Seemann R, Schicho K, Ewers R (2007) First Report of an Innovative Angle Stable, Ultrasonic-Guided, Resorbable Osteosynthesis System for the Treatment of Midfacial Trauma. J Oral Maxillofac Surg 65:33e33
12.
go back to reference Ciccone WJ, Motz C, Bentley C, Tasto JP (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288PubMed Ciccone WJ, Motz C, Bentley C, Tasto JP (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288PubMed
13.
go back to reference van Sliedregt A, Hesseling SC, Knook M, de Groot K, van Blitterswijk CA (1991) Intraperitoneal injection of four polylactide particulates. In: 17th Annual Meeting of the Society for Biomaterials. Scottsdale. p 246 van Sliedregt A, Hesseling SC, Knook M, de Groot K, van Blitterswijk CA (1991) Intraperitoneal injection of four polylactide particulates. In: 17th Annual Meeting of the Society for Biomaterials. Scottsdale. p 246
14.
go back to reference Kääb MJ (2005) Möglichkeiten und Grenzen minimal-invasiver Schulterchirurgie. In: Medizinischen Fakultät der Charité—Universitätsmedizin Berlin. FU Berlin, Berlin Kääb MJ (2005) Möglichkeiten und Grenzen minimal-invasiver Schulterchirurgie. In: Medizinischen Fakultät der Charité—Universitätsmedizin Berlin. FU Berlin, Berlin
15.
go back to reference Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, Rehm KE (2004) Soft tissue reactions of different biodegradable polylactide implants. Biomaterials 25:259–267PubMedCrossRef Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, Rehm KE (2004) Soft tissue reactions of different biodegradable polylactide implants. Biomaterials 25:259–267PubMedCrossRef
16.
go back to reference Couture DE, Branch CL Jr (2004) Posterior lumbar interbody fusion with bioabsorbable spacers and local autograft in a series of 27 patients. Neurosurg Focus 16:E8PubMedCrossRef Couture DE, Branch CL Jr (2004) Posterior lumbar interbody fusion with bioabsorbable spacers and local autograft in a series of 27 patients. Neurosurg Focus 16:E8PubMedCrossRef
17.
go back to reference Kohn J, Langer R (1996) Bioresorbable and bioerodible materials. Academic Press, San Diego Kohn J, Langer R (1996) Bioresorbable and bioerodible materials. Academic Press, San Diego
18.
go back to reference Rehm KE, Helling HJ, Claes L (1994) Report of the Biodegradable Implants Study Group. Aktuelle Traumatol 24:70–73PubMed Rehm KE, Helling HJ, Claes L (1994) Report of the Biodegradable Implants Study Group. Aktuelle Traumatol 24:70–73PubMed
19.
go back to reference Peltoniemi HH, Tulamo RM, Pihlajamaki HK, Kallioinen M, Pohjonen T, Tormala P, Rokkanen PU, Waris T (1998) Consolidation of craniotomy lines after resorbable polylactide and titanium plating: a comparative experimental study in sheep. Plast Reconstr Surg 101:123–133PubMedCrossRef Peltoniemi HH, Tulamo RM, Pihlajamaki HK, Kallioinen M, Pohjonen T, Tormala P, Rokkanen PU, Waris T (1998) Consolidation of craniotomy lines after resorbable polylactide and titanium plating: a comparative experimental study in sheep. Plast Reconstr Surg 101:123–133PubMedCrossRef
20.
go back to reference Ames CP, Cornwall GB, Crawford NR, Nottmeier E, Chamberlain RH, Sonntag VK (2002) Feasibility of a resorbable anterior cervical graft containment plate. J Neurosurg 97:440–446PubMed Ames CP, Cornwall GB, Crawford NR, Nottmeier E, Chamberlain RH, Sonntag VK (2002) Feasibility of a resorbable anterior cervical graft containment plate. J Neurosurg 97:440–446PubMed
21.
go back to reference Claes LE, Ignatius AA, Rehm KE, Scholz C (1996) New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials 17:1621–1626PubMedCrossRef Claes LE, Ignatius AA, Rehm KE, Scholz C (1996) New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials 17:1621–1626PubMedCrossRef
22.
go back to reference Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26:1028–1037PubMedCrossRef Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26:1028–1037PubMedCrossRef
23.
go back to reference Aryan HE, Lu DC, Acosta FL Jr, Hartl R, McCormick PW, Ames CP (2007) Bioabsorbable anterior cervical plating: initial multicenter clinical and radiographic experience. Spine 32:1084–1088PubMedCrossRef Aryan HE, Lu DC, Acosta FL Jr, Hartl R, McCormick PW, Ames CP (2007) Bioabsorbable anterior cervical plating: initial multicenter clinical and radiographic experience. Spine 32:1084–1088PubMedCrossRef
24.
go back to reference Branch CL Jr (1999) Anterior cervical fusion: the case for fusion without plating. Clin Neurosurg 45:22–24 (discussion 21)PubMed Branch CL Jr (1999) Anterior cervical fusion: the case for fusion without plating. Clin Neurosurg 45:22–24 (discussion 21)PubMed
25.
go back to reference Paramore CG, Dickman CA, Sonntag VK (1996) Radiographic and clinical follow-up review of Caspar plates in 49 patients. J Neurosurg 84:957–961PubMedCrossRef Paramore CG, Dickman CA, Sonntag VK (1996) Radiographic and clinical follow-up review of Caspar plates in 49 patients. J Neurosurg 84:957–961PubMedCrossRef
26.
go back to reference Wigfield CC, Nelson RJ (2001) Nonautologous interbody fusion materials in cervical spine surgery: how strong is the evidence to justify their use? Spine 26:687–694PubMedCrossRef Wigfield CC, Nelson RJ (2001) Nonautologous interbody fusion materials in cervical spine surgery: how strong is the evidence to justify their use? Spine 26:687–694PubMedCrossRef
27.
go back to reference Kostuik JP, Connolly PJ, Esses SI, Suh P (1993) Anterior cervical plate fixation with the titanium hollow screw plate system. Spine 18:1273–1278PubMedCrossRef Kostuik JP, Connolly PJ, Esses SI, Suh P (1993) Anterior cervical plate fixation with the titanium hollow screw plate system. Spine 18:1273–1278PubMedCrossRef
28.
go back to reference Zaveri GR, Ford M (2001) Cervical spondylosis: the role of anterior instrumentation after decompression and fusion. J Spinal Disord 14:10–16PubMedCrossRef Zaveri GR, Ford M (2001) Cervical spondylosis: the role of anterior instrumentation after decompression and fusion. J Spinal Disord 14:10–16PubMedCrossRef
29.
go back to reference Dennis S, Watkins R, Landaker S, Dillin W, Springer D (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine 14:876–878PubMedCrossRef Dennis S, Watkins R, Landaker S, Dillin W, Springer D (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine 14:876–878PubMedCrossRef
30.
go back to reference Goh JC, Wong HK, Thambyah A, Yu CS (2000) Influence of PLIF cage size on lumbar spine stability. Spine 25:35–39 (discussion 40)PubMedCrossRef Goh JC, Wong HK, Thambyah A, Yu CS (2000) Influence of PLIF cage size on lumbar spine stability. Spine 25:35–39 (discussion 40)PubMedCrossRef
31.
go back to reference Zhang XL, Wang SJ, Wang YL, Liu XQ (2008) The comparative study of effect of a modified open door laminoplasty using anchor method on axial symptoms and cervical curvature. Zhongguo Gu Shang 21:759–761PubMed Zhang XL, Wang SJ, Wang YL, Liu XQ (2008) The comparative study of effect of a modified open door laminoplasty using anchor method on axial symptoms and cervical curvature. Zhongguo Gu Shang 21:759–761PubMed
33.
go back to reference Vaccaro AR, Carrino JA, Venger BH, Albert T, Kelleher PM, Hilibrand A, Singh K (2002) Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption. J Neurosurg 97:473–480PubMed Vaccaro AR, Carrino JA, Venger BH, Albert T, Kelleher PM, Hilibrand A, Singh K (2002) Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption. J Neurosurg 97:473–480PubMed
34.
go back to reference Vaccaro AR, Madigan L (2002) Spinal applications of bioabsorbable implants. Orthopedics 25:s1115–s1120PubMed Vaccaro AR, Madigan L (2002) Spinal applications of bioabsorbable implants. Orthopedics 25:s1115–s1120PubMed
35.
go back to reference Brooke NS, Rorke AW, King AT, Gullan RW (1997) Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 11:221–227PubMedCrossRef Brooke NS, Rorke AW, King AT, Gullan RW (1997) Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 11:221–227PubMedCrossRef
36.
go back to reference Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleiter T, Kinzl L, Claes L (2000) Vertebral body replacement with a bioglass-polyurethane composite in spine metastases—clinical, radiological and biomechanical results. Eur Spine J 9:437–444PubMedCrossRef Schulte M, Schultheiss M, Hartwig E, Wilke HJ, Wolf S, Sokiranski R, Fleiter T, Kinzl L, Claes L (2000) Vertebral body replacement with a bioglass-polyurethane composite in spine metastases—clinical, radiological and biomechanical results. Eur Spine J 9:437–444PubMedCrossRef
37.
go back to reference Thomas KA, Toth JM, Crawford NR, Seim HB 3rd, Shi LL, Harris MB, Turner AS (2008) Bioresorbable polylactide interbody implants in an ovine anterior cervical discectomy and fusion model: three-year results. Spine 33:734–742PubMedCrossRef Thomas KA, Toth JM, Crawford NR, Seim HB 3rd, Shi LL, Harris MB, Turner AS (2008) Bioresorbable polylactide interbody implants in an ovine anterior cervical discectomy and fusion model: three-year results. Spine 33:734–742PubMedCrossRef
38.
go back to reference Cornwall GB, Ames CP, Crawford NR, Chamberlain RH, Rubino AM, Seim HB 3rd, Turner AS (2004) In vivo evaluation of bioresorbable polylactide implants for cervical graft containment in an ovine spinal fusion model. Neurosurg Focus 16:E5PubMedCrossRef Cornwall GB, Ames CP, Crawford NR, Chamberlain RH, Rubino AM, Seim HB 3rd, Turner AS (2004) In vivo evaluation of bioresorbable polylactide implants for cervical graft containment in an ovine spinal fusion model. Neurosurg Focus 16:E5PubMedCrossRef
39.
go back to reference Krijnen MR, Mullender MG, Smit TH, Everts V, Wuisman PI (2006) Radiographic, histologic, and chemical evaluation of bioresorbable 70/30 poly-l-lactide-CO-D, l-lactide interbody fusion cages in a goat model. Spine 31:1559–1567PubMedCrossRef Krijnen MR, Mullender MG, Smit TH, Everts V, Wuisman PI (2006) Radiographic, histologic, and chemical evaluation of bioresorbable 70/30 poly-l-lactide-CO-D, l-lactide interbody fusion cages in a goat model. Spine 31:1559–1567PubMedCrossRef
40.
go back to reference Smit TH, Krijnen MR, van Dijk M, Wuisman PI (2006) Application of polylactides in spinal cages: studies in a goat model. J Mater Sci Mater Med 17:1237–1244PubMedCrossRef Smit TH, Krijnen MR, van Dijk M, Wuisman PI (2006) Application of polylactides in spinal cages: studies in a goat model. J Mater Sci Mater Med 17:1237–1244PubMedCrossRef
41.
go back to reference Lowe TG, Coe JD (2002) Bioresorbable polymer implants in the unilateral transforaminal lumbar interbody fusion procedure. Orthopedics 25:s1179–s1183 (discussion s1183)PubMed Lowe TG, Coe JD (2002) Bioresorbable polymer implants in the unilateral transforaminal lumbar interbody fusion procedure. Orthopedics 25:s1179–s1183 (discussion s1183)PubMed
42.
go back to reference Austin RC, Branch CL Jr, Alexander JT (2003) Novel bioabsorbable interbody fusion spacer-assisted fusion for correction of spinal deformity. Neurosurg Focus 14:e11PubMedCrossRef Austin RC, Branch CL Jr, Alexander JT (2003) Novel bioabsorbable interbody fusion spacer-assisted fusion for correction of spinal deformity. Neurosurg Focus 14:e11PubMedCrossRef
43.
go back to reference Kuklo TR, Rosner MK, Polly DW Jr (2004) Computerized tomography evaluation of a resorbable implant after transforaminal lumbar interbody fusion. Neurosurg Focus 16:E10PubMedCrossRef Kuklo TR, Rosner MK, Polly DW Jr (2004) Computerized tomography evaluation of a resorbable implant after transforaminal lumbar interbody fusion. Neurosurg Focus 16:E10PubMedCrossRef
44.
go back to reference Leutenegger CM, Rechenberg Bv, Zlinsky K, Mislin C, Akens M, Auer JA, Lutz H (1999) Quantitative real time PCR for equine cytokines in nondecalcified bone tissue embedded in methyl methacrylate. Calcif Tissue Int 65:437–444 Leutenegger CM, Rechenberg Bv, Zlinsky K, Mislin C, Akens M, Auer JA, Lutz H (1999) Quantitative real time PCR for equine cytokines in nondecalcified bone tissue embedded in methyl methacrylate. Calcif Tissue Int 65:437–444
45.
go back to reference Engelhardt P, Gasser JA (1995) LEICA HistoDur: A Resin Specifically Designed for the Histology of Mineralized Tissues. In: Leica Applications Brief. Sandoz Pharma LTD, Osteoporosis Research, 4002 Basel, Switzerland Engelhardt P, Gasser JA (1995) LEICA HistoDur: A Resin Specifically Designed for the Histology of Mineralized Tissues. In: Leica Applications Brief. Sandoz Pharma LTD, Osteoporosis Research, 4002 Basel, Switzerland
46.
go back to reference Heidenreich D, Wenger A, Müller A, Hack E, Langhoff JD, von Rechenberg B (2008) Temperature characterization of ultrasonically inserted polymer implants (BoneWelding® Technology) in the sheep vertebral body—an in vitro and in vivo study. In: European Spine Journal_3 Deutscher Wirbelsäulenkongress Ulm, Germany, pp 1584–1585 Heidenreich D, Wenger A, Müller A, Hack E, Langhoff JD, von Rechenberg B (2008) Temperature characterization of ultrasonically inserted polymer implants (BoneWelding® Technology) in the sheep vertebral body—an in vitro and in vivo study. In: European Spine Journal_3 Deutscher Wirbelsäulenkongress Ulm, Germany, pp 1584–1585
47.
go back to reference Heidenreich D, Weber U, Seiler P, Bächi B, Wunderlin S, Langhoff JD, von Rechenberg B (2008) An experimental in vivo analysis of the bone response to ultrasonically inserted implants (BoneWelding® Technology) in the sheep spine. In: European Spine Journal_3 Deutscher Wirbelsäulenkongress Ulm, Germany, p 1570 Heidenreich D, Weber U, Seiler P, Bächi B, Wunderlin S, Langhoff JD, von Rechenberg B (2008) An experimental in vivo analysis of the bone response to ultrasonically inserted implants (BoneWelding® Technology) in the sheep spine. In: European Spine Journal_3 Deutscher Wirbelsäulenkongress Ulm, Germany, p 1570
48.
go back to reference van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI (2002) The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine 27:682–688PubMedCrossRef van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI (2002) The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine 27:682–688PubMedCrossRef
49.
go back to reference Pflugmacher R, Eindorf T, Scholz M, Gumnior S, Krall C, Schleicher P, Haas NP, Kandziora F (2004) Biodegradable cage. Osteointegration in spondylodesis of the sheep cervical spine. Chirurg 75:1003–1012PubMedCrossRef Pflugmacher R, Eindorf T, Scholz M, Gumnior S, Krall C, Schleicher P, Haas NP, Kandziora F (2004) Biodegradable cage. Osteointegration in spondylodesis of the sheep cervical spine. Chirurg 75:1003–1012PubMedCrossRef
50.
go back to reference Bostman O, Hirvensalo E, Partio E, Tormala P, Rokkanen P (1991) Impact of the use of absorbable fracture fixation implants on consumption of hospital resources and economic costs. J Trauma 31:1400–1403PubMedCrossRef Bostman O, Hirvensalo E, Partio E, Tormala P, Rokkanen P (1991) Impact of the use of absorbable fracture fixation implants on consumption of hospital resources and economic costs. J Trauma 31:1400–1403PubMedCrossRef
51.
go back to reference Bostman OM (1996) Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res 31(10):233–239 Bostman OM (1996) Metallic or absorbable fracture fixation devices. A cost minimization analysis. Clin Orthop Relat Res 31(10):233–239
52.
go back to reference Brodke DS, Gollogly S, Alexander Mohr R, Nguyen BK, Dailey AT, Bachus AK (2001) Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness. Spine 26:1324–1329PubMedCrossRef Brodke DS, Gollogly S, Alexander Mohr R, Nguyen BK, Dailey AT, Bachus AK (2001) Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness. Spine 26:1324–1329PubMedCrossRef
53.
go back to reference Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B (2005) Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Craniomaxillofac Surg 33:37–44PubMedCrossRef Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B (2005) Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty—an experimental study in sheep. J Craniomaxillofac Surg 33:37–44PubMedCrossRef
54.
go back to reference Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B (2005) Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26:4383–4394PubMedCrossRef Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B (2005) Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26:4383–4394PubMedCrossRef
55.
go back to reference Ferguson SJ, Weber U, von Rechenberg B, Mayer J (2005) Enhancing the mechanical integrity of the implant-bone interface with BoneWelding(R) technology: determination of quasi-static interfacial strength and fatigue resistance. J Biomed Mater Res B Appl Biomater 77:13–20 Ferguson SJ, Weber U, von Rechenberg B, Mayer J (2005) Enhancing the mechanical integrity of the implant-bone interface with BoneWelding(R) technology: determination of quasi-static interfacial strength and fatigue resistance. J Biomed Mater Res B Appl Biomater 77:13–20
56.
57.
go back to reference Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR (2005) Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Spine 30:294–301. doi:00007632-200502010-00008[pii] PubMedCrossRef Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR (2005) Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Spine 30:294–301. doi:00007632-200502010-00008[pii] PubMedCrossRef
58.
go back to reference Spivak JM, Chen D, Kummer FJ (1999) The effect of locking fixation screws on the stability of anterior cervical plating. Spine 24:334–338PubMedCrossRef Spivak JM, Chen D, Kummer FJ (1999) The effect of locking fixation screws on the stability of anterior cervical plating. Spine 24:334–338PubMedCrossRef
59.
go back to reference Nunamaker DM (1998) Experimental models of fracture repair. Clin Orthop Relat Res 355(suppl):S56–S65 Nunamaker DM (1998) Experimental models of fracture repair. Clin Orthop Relat Res 355(suppl):S56–S65
60.
go back to reference Nunamaker DM, Perren SM (1979) A radiological and histological analysis of fracture healing using prebending of compression plates. Clin Orthop Relat Res 138:167–174 Nunamaker DM, Perren SM (1979) A radiological and histological analysis of fracture healing using prebending of compression plates. Clin Orthop Relat Res 138:167–174
61.
go back to reference Rahn BA, Gallinaro P, Baltensperger A, Perren SM (1971) Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg Am 53:783–786PubMed Rahn BA, Gallinaro P, Baltensperger A, Perren SM (1971) Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg Am 53:783–786PubMed
62.
go back to reference Rechenberg Bv, Auer JA (2006) Bone grafts and bone replacements. In: Auer JA, Stick JA (eds) Equine Surgery. Saunders Elsevier, USA, pp 1030–1036CrossRef Rechenberg Bv, Auer JA (2006) Bone grafts and bone replacements. In: Auer JA, Stick JA (eds) Equine Surgery. Saunders Elsevier, USA, pp 1030–1036CrossRef
63.
go back to reference von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A, Poole AR, Auer JA (2003) Changes in subchondral bone in cartilage resurfacing—an experimental study in sheep using different types of osteochondral grafts. Osteoarthr Cartil 11:265–277PubMedCrossRef von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A, Poole AR, Auer JA (2003) Changes in subchondral bone in cartilage resurfacing—an experimental study in sheep using different types of osteochondral grafts. Osteoarthr Cartil 11:265–277PubMedCrossRef
64.
go back to reference von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Neges K, Auer JA (2004) The use of photooxidized, mushroom structured osteochondral grafts for cartilage resurfacing—a comparison to photooxidized cylindrical grafts in an experimental study in sheep. Osteoarthr Cartil 12:201–216PubMedCrossRef von Rechenberg B, Akens MK, Nadler D, Bittmann P, Zlinszky K, Neges K, Auer JA (2004) The use of photooxidized, mushroom structured osteochondral grafts for cartilage resurfacing—a comparison to photooxidized cylindrical grafts in an experimental study in sheep. Osteoarthr Cartil 12:201–216PubMedCrossRef
66.
go back to reference Lassus J, Salo J, Jiranek WA, Santavirta S, Nevalainen J, Matucci-Cerinic M, Horak P, Konttinen Y (1998) Macrophage activation results in bone resorption. Clin Orthop Relat Res 138:7–15 Lassus J, Salo J, Jiranek WA, Santavirta S, Nevalainen J, Matucci-Cerinic M, Horak P, Konttinen Y (1998) Macrophage activation results in bone resorption. Clin Orthop Relat Res 138:7–15
67.
go back to reference Davidson SR, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125:305–314PubMedCrossRef Davidson SR, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125:305–314PubMedCrossRef
69.
go back to reference Fuchsberger A (1988) Damaging temperature during the machining of bone. Unfallchirurgie 14:173–183PubMed Fuchsberger A (1988) Damaging temperature during the machining of bone. Unfallchirurgie 14:173–183PubMed
70.
go back to reference Jefferiss CD, Lee AJ, Ling RS (1975) Thermal aspects of self-curing polymethylmethacrylate. J Bone Joint Surg Br 57:511–518PubMed Jefferiss CD, Lee AJ, Ling RS (1975) Thermal aspects of self-curing polymethylmethacrylate. J Bone Joint Surg Br 57:511–518PubMed
71.
go back to reference Berman AT, Reid JS, Yanicko DR Jr, Sih GC, Zimmerman MR (1984) Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop Relat Res 284–292 Berman AT, Reid JS, Yanicko DR Jr, Sih GC, Zimmerman MR (1984) Thermally induced bone necrosis in rabbits. Relation to implant failure in humans. Clin Orthop Relat Res 284–292
72.
go back to reference Zygmunt S, Toksvig-Larsen S, Saveland H, Rydholm U, Ryd L (1992) Hyperthermia during occipito-cervical fusion with acrylic cement. Epidural thermometry in 23 cases. Acta Orthop Scand 63:545–548PubMedCrossRef Zygmunt S, Toksvig-Larsen S, Saveland H, Rydholm U, Ryd L (1992) Hyperthermia during occipito-cervical fusion with acrylic cement. Epidural thermometry in 23 cases. Acta Orthop Scand 63:545–548PubMedCrossRef
73.
go back to reference Deramond H, Wright NT, Belkoff SM (1999) Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 25:17S–21SPubMedCrossRef Deramond H, Wright NT, Belkoff SM (1999) Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 25:17S–21SPubMedCrossRef
74.
go back to reference Hsieh PH, Tai CL, Liaw JW, Chang YH (2008) Thermal damage potential during hip resurfacing in osteonecrosis of the femoral head: an experimental study. J Orthop Res 26:1206–1209. doi:10.1002/jor.20639 PubMedCrossRef Hsieh PH, Tai CL, Liaw JW, Chang YH (2008) Thermal damage potential during hip resurfacing in osteonecrosis of the femoral head: an experimental study. J Orthop Res 26:1206–1209. doi:10.​1002/​jor.​20639 PubMedCrossRef
Metadata
Title
The use of BoneWelding® technology in spinal surgery: an experimental study in sheep
Authors
Dorothee Heidenreich
Jens D. Langhoff
Katja Nuss
Katharina Kluge
Käthi Kämpf
Katalin Zlinsky
Monika Hilbe
Jörg Mayer
Brigitte von Rechenberg
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 11/2011
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-011-1799-1

Other articles of this Issue 11/2011

European Spine Journal 11/2011 Go to the issue