Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 9/2023

16-05-2023 | KNEE

The tibial tunnel drilling angles of 60° provided a lower ultimate load to failure on a single bundle posterior cruciate ligament graft using interference screw fixation compared to 30°/45°

Authors: Xiaohui Zhang, Fei Teng, Bin Geng, Fan Lu, Zhongcheng Liu, Laiwei Guo, Hua Han, Meng Wu, Yayi Xia, Yuanjun Teng

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 9/2023

Login to get access

Abstract

Purpose

To biomechanically compare the initial fixation strength of grafts among three tibial tunnel angles (30°/45°/60°) in transtibial posterior cruciate ligament (PCL) reconstruction.

Methods

A series of transtibial PCL reconstruction models were established with porcine tibias and bovine tendons. Specimens were randomly assigned to three groups according to the angles between the tibial tunnel and the perpendicular line of the tibial shaft: Group A (30°, n = 12), Group B (45°, n = 12), and Group C (60°, n = 12). The area of the tunnel entrance, the segmental bone mineral density (sBMD) of the graft fixation site of the tibia and the maximum insertion torque of the interference screw were measured. Finally, load to failure tests were carried out on the graft-screw-tibia constructs at the same rate.

Results

Ultimate load to failure in Group C (335.2 ± 107.5 N) was significantly lower than that in Group A (584.1 ± 127.9 N, P < 0.01) and Group B (521.9 ± 95.9 N, P < 0.01). There were no significant differences between biomechanical properties of Groups A and B (n.s.). The posterior part fractures of the tibial tunnel exit occurred in eight specimens of Group C. In addition, the ultimate load was proven to be related to insertion torque (rho = 0.7, P < 0.01), sBMD (rho = 0.7, P < 0.01), and the area of the tunnel entrance (rho =− 0.4, P = 0.01).

Conclusion

The ultimate load to failure was significantly lower in tibial PCL interference screw fixation for tunnels drilled at 60° compared to 30°/45°. In addition, the ultimate load was significantly correlated with insertion torque, sBMD and the area of the tunnel entrance. Given that the load to failure of distal fixation may not be sufficient for early postoperative rehabilitation, a 60° tunnel should not be recommended to drill in tibia during PCL reconstruction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahn JH, Bae JH, Lee YS, Choi K, Bae TS, Wang JH (2009) An anatomical and biomechanical comparison of anteromedial and anterolateral approaches for tibial tunnel of posterior cruciate ligament reconstruction: evaluation of the widening effect of the anterolateral approach. Am J Sports Med 37:1777–1783CrossRefPubMed Ahn JH, Bae JH, Lee YS, Choi K, Bae TS, Wang JH (2009) An anatomical and biomechanical comparison of anteromedial and anterolateral approaches for tibial tunnel of posterior cruciate ligament reconstruction: evaluation of the widening effect of the anterolateral approach. Am J Sports Med 37:1777–1783CrossRefPubMed
2.
go back to reference Alentorn-Geli E, Stuart JJ, James Choi JH, Toth AP, Moorman CT 3rd, Taylor DC (2017) Posterolateral portal tibial tunnel drilling for posterior cruciate ligament reconstruction: technique and evaluation of safety and tunnel position. Knee Surg Sports Traumatol Arthrosc 25:2474–2480CrossRefPubMed Alentorn-Geli E, Stuart JJ, James Choi JH, Toth AP, Moorman CT 3rd, Taylor DC (2017) Posterolateral portal tibial tunnel drilling for posterior cruciate ligament reconstruction: technique and evaluation of safety and tunnel position. Knee Surg Sports Traumatol Arthrosc 25:2474–2480CrossRefPubMed
3.
go back to reference Ammann E, Hecker A, Bachmann E, Snedeker JG, Fucentese SF (2022) Evaluation of tibial fixation devices for quadrupled hamstring ACL reconstruction. Orthop J Sports Med 10:23259671221096108CrossRefPubMedPubMedCentral Ammann E, Hecker A, Bachmann E, Snedeker JG, Fucentese SF (2022) Evaluation of tibial fixation devices for quadrupled hamstring ACL reconstruction. Orthop J Sports Med 10:23259671221096108CrossRefPubMedPubMedCentral
4.
go back to reference Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710CrossRefPubMed Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710CrossRefPubMed
5.
go back to reference Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244CrossRefPubMed Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244CrossRefPubMed
6.
go back to reference Chia SL, Kapoor V, Ali MM, Lie D, Chang PC, Mitra AK et al (2002) The posterior cruciate ligament: an anthropometric study in Asians and evaluation of safe limits for bony tunnel creation during reconstruction. Ann Acad Med Singap 31:631–635PubMed Chia SL, Kapoor V, Ali MM, Lie D, Chang PC, Mitra AK et al (2002) The posterior cruciate ligament: an anthropometric study in Asians and evaluation of safe limits for bony tunnel creation during reconstruction. Ann Acad Med Singap 31:631–635PubMed
7.
go back to reference Gwinner C, Jung TM, Schatka I, Weiler A (2019) Posterior laxity increases over time after PCL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:389–396CrossRefPubMed Gwinner C, Jung TM, Schatka I, Weiler A (2019) Posterior laxity increases over time after PCL reconstruction. Knee Surg Sports Traumatol Arthrosc 27:389–396CrossRefPubMed
8.
go back to reference Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97–102CrossRefPubMed Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97–102CrossRefPubMed
9.
go back to reference Jaglowski JR, Williams BT, Turnbull TL, LaPrade RF, Wijdicks CA (2016) High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model. Knee Surg Sports Traumatol Arthrosc 24:895–902CrossRefPubMed Jaglowski JR, Williams BT, Turnbull TL, LaPrade RF, Wijdicks CA (2016) High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model. Knee Surg Sports Traumatol Arthrosc 24:895–902CrossRefPubMed
10.
go back to reference Jarvinen TL, Nurmi JT, Sievanen H (2004) Bone density and insertion torque as predictors of anterior cruciate ligament graft fixation strength. Am J Sports Med 32:1421–1429CrossRefPubMed Jarvinen TL, Nurmi JT, Sievanen H (2004) Bone density and insertion torque as predictors of anterior cruciate ligament graft fixation strength. Am J Sports Med 32:1421–1429CrossRefPubMed
11.
go back to reference Kim SJ, Kim TE, Jo SB, Kung YP (2009) Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Joint Surg Am 91:2543–2549CrossRefPubMed Kim SJ, Kim TE, Jo SB, Kung YP (2009) Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Joint Surg Am 91:2543–2549CrossRefPubMed
12.
go back to reference Kopf S, Martin DE, Tashman S, Fu FH (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92:871–881CrossRefPubMed Kopf S, Martin DE, Tashman S, Fu FH (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92:871–881CrossRefPubMed
13.
go back to reference Krott NL, Wengle L, Whelan D, Wild M, Betsch M (2022) Single and double bundle posterior cruciate ligament reconstruction yield comparable clinical and functional outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30:2388–2399CrossRefPubMed Krott NL, Wengle L, Whelan D, Wild M, Betsch M (2022) Single and double bundle posterior cruciate ligament reconstruction yield comparable clinical and functional outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30:2388–2399CrossRefPubMed
14.
go back to reference LaPrade RF, Cinque ME, Dornan GJ, DePhillipo NN, Geeslin AG, Moatshe G et al (2018) Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: outcomes were comparable to anterior cruciate ligament reconstructions. Am J Sports Med 46:1809–1818CrossRefPubMed LaPrade RF, Cinque ME, Dornan GJ, DePhillipo NN, Geeslin AG, Moatshe G et al (2018) Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: outcomes were comparable to anterior cruciate ligament reconstructions. Am J Sports Med 46:1809–1818CrossRefPubMed
15.
go back to reference Lee YS, Ra HJ, Ahn JH, Ha JK, Kim JG (2011) Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement. Arthroscopy 27:182–187CrossRefPubMed Lee YS, Ra HJ, Ahn JH, Ha JK, Kim JG (2011) Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement. Arthroscopy 27:182–187CrossRefPubMed
16.
go back to reference Levy BA, Piepenbrink M, Stuart MJ, Wijdicks CA (2021) Posterior cruciate ligament reconstruction with independent suture tape reinforcement: an in vitro biomechanical full construct study. Orthop J Sports Med 9:2325967120981875CrossRefPubMedPubMedCentral Levy BA, Piepenbrink M, Stuart MJ, Wijdicks CA (2021) Posterior cruciate ligament reconstruction with independent suture tape reinforcement: an in vitro biomechanical full construct study. Orthop J Sports Med 9:2325967120981875CrossRefPubMedPubMedCentral
17.
go back to reference Li Y, Chen XZ, Zhang J, Song GY, Li X, Feng H (2016) What role does low bone mineral density play in the “killer turn” effect after transtibial posterior cruciate ligament reconstruction? Orthop Surg 8:483–489CrossRefPubMedPubMedCentral Li Y, Chen XZ, Zhang J, Song GY, Li X, Feng H (2016) What role does low bone mineral density play in the “killer turn” effect after transtibial posterior cruciate ligament reconstruction? Orthop Surg 8:483–489CrossRefPubMedPubMedCentral
18.
go back to reference Li Y, Zhang J, Song G, Li X, Feng H (2016) The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol 3:13–18PubMedPubMedCentral Li Y, Zhang J, Song G, Li X, Feng H (2016) The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol 3:13–18PubMedPubMedCentral
19.
go back to reference Lin Y, Huang Z, Zhang K, Pan X, Huang X, Li J et al (2020) Lower tibial tunnel placement in isolated posterior cruciate ligament reconstruction: clinical outcomes and quantitative radiological analysis of the killer turn. Orthop J Sports Med 8:2325967120923950CrossRefPubMedPubMedCentral Lin Y, Huang Z, Zhang K, Pan X, Huang X, Li J et al (2020) Lower tibial tunnel placement in isolated posterior cruciate ligament reconstruction: clinical outcomes and quantitative radiological analysis of the killer turn. Orthop J Sports Med 8:2325967120923950CrossRefPubMedPubMedCentral
20.
go back to reference Lockwood WC, Marchetti DC, Dahl KD, Mikula JD, Williams BT, Kheir MM et al (2017) High-load preconditioning of human soft tissue hamstring grafts: an in vitro biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 25:138–143CrossRefPubMed Lockwood WC, Marchetti DC, Dahl KD, Mikula JD, Williams BT, Kheir MM et al (2017) High-load preconditioning of human soft tissue hamstring grafts: an in vitro biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 25:138–143CrossRefPubMed
21.
go back to reference MacGillivray JD, Stein BE, Park M, Allen AA, Wickiewicz TL, Warren RF (2006) Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy 22:320–328CrossRefPubMed MacGillivray JD, Stein BE, Park M, Allen AA, Wickiewicz TL, Warren RF (2006) Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy 22:320–328CrossRefPubMed
22.
go back to reference Margheritini F, Mauro CS, Rihn JA, Stabile KJ, Woo SL, Harner CD (2004) Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med 32:587–593CrossRefPubMed Margheritini F, Mauro CS, Rihn JA, Stabile KJ, Woo SL, Harner CD (2004) Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med 32:587–593CrossRefPubMed
23.
go back to reference Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL, Harner CD (2005) Biomechanics of initial tibial fixation in posterior cruciate ligament reconstruction. Arthroscopy 21:1164–1171CrossRefPubMed Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL, Harner CD (2005) Biomechanics of initial tibial fixation in posterior cruciate ligament reconstruction. Arthroscopy 21:1164–1171CrossRefPubMed
24.
go back to reference Ochiai S, Hagino T, Senga S, Yamashita T, Haro H (2019) Treatment outcome of reconstruction for isolated posterior cruciate injury: subjective and objective evaluations. J Knee Surg 32:506–512CrossRefPubMed Ochiai S, Hagino T, Senga S, Yamashita T, Haro H (2019) Treatment outcome of reconstruction for isolated posterior cruciate injury: subjective and objective evaluations. J Knee Surg 32:506–512CrossRefPubMed
25.
go back to reference Okoroafor UC, Saint-Preux F, Gill SW, Bledsoe G, Kaar SG (2016) Nonanatomic tibial tunnel placement for single-bundle posterior cruciate ligament reconstruction leads to greater posterior tibial translation in a biomechanical model. Arthroscopy 32:1354–1358CrossRefPubMed Okoroafor UC, Saint-Preux F, Gill SW, Bledsoe G, Kaar SG (2016) Nonanatomic tibial tunnel placement for single-bundle posterior cruciate ligament reconstruction leads to greater posterior tibial translation in a biomechanical model. Arthroscopy 32:1354–1358CrossRefPubMed
27.
go back to reference Voos JE, Mauro CS, Wente T, Warren RF, Wickiewicz TL (2012) Posterior cruciate ligament: anatomy, biomechanics, and outcomes. Am J Sports Med 40:222–231CrossRefPubMed Voos JE, Mauro CS, Wente T, Warren RF, Wickiewicz TL (2012) Posterior cruciate ligament: anatomy, biomechanics, and outcomes. Am J Sports Med 40:222–231CrossRefPubMed
28.
go back to reference Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W (2007) Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy 23:1104–1111CrossRefPubMed Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W (2007) Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy 23:1104–1111CrossRefPubMed
29.
go back to reference Winkler PW, Zsidai B, Wagala NN, Hughes JD, Horvath A, Senorski EH et al (2021) Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 2: surgical techniques, outcomes and rehabilitation. Knee Surg Sports Traumatol Arthrosc 29:682–693CrossRefPubMed Winkler PW, Zsidai B, Wagala NN, Hughes JD, Horvath A, Senorski EH et al (2021) Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 2: surgical techniques, outcomes and rehabilitation. Knee Surg Sports Traumatol Arthrosc 29:682–693CrossRefPubMed
30.
go back to reference Yang F, Yokoe T, Ouchi K, Tajima T, Chosa E (2023) Influence of the tibial tunnel angle and posterior tibial slope on “killer turn” during posterior cruciate ligament reconstruction: a three-dimensional finite element analysis. J Clin Med 12:805CrossRefPubMedPubMedCentral Yang F, Yokoe T, Ouchi K, Tajima T, Chosa E (2023) Influence of the tibial tunnel angle and posterior tibial slope on “killer turn” during posterior cruciate ligament reconstruction: a three-dimensional finite element analysis. J Clin Med 12:805CrossRefPubMedPubMedCentral
Metadata
Title
The tibial tunnel drilling angles of 60° provided a lower ultimate load to failure on a single bundle posterior cruciate ligament graft using interference screw fixation compared to 30°/45°
Authors
Xiaohui Zhang
Fei Teng
Bin Geng
Fan Lu
Zhongcheng Liu
Laiwei Guo
Hua Han
Meng Wu
Yayi Xia
Yuanjun Teng
Publication date
16-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 9/2023
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-023-07428-6

Other articles of this Issue 9/2023

Knee Surgery, Sports Traumatology, Arthroscopy 9/2023 Go to the issue