Skip to main content
Top
Published in: Heart and Vessels 4/2014

01-07-2014 | Original Article

The synergistic therapeutic effect of hepatocyte growth factor and granulocyte colony-stimulating factor on pulmonary hypertension in rats

Authors: Yinghua Guo, Longxiang Su, Yinghui Li, Na Guo, Lixin Xie, Dong Zhang, Xiaojun Zhang, Hongxia Li, Guizhi Zhang, Yajuan Wang, Changting Liu

Published in: Heart and Vessels | Issue 4/2014

Login to get access

Abstract

Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary arterial pressure and vascular resistance. Despite advances in therapy for PAH, its treatment and prognosis remain poor. We aimed to investigate whether the transplantation of bone marrow mesenchymal stem cells (MSCs) overexpressing hepatocyte growth factor (HGF), alone or in combination with granulocyte colony-stimulating factor (G-CSF), attenuates the development of experimental monocrotaline (MCT)-induced PAH. Three weeks after MCT administration, rats were divided into the following groups: (1) untreated (PAH); (2) HGF treated; (3) MSCs administered; (4) HGF-MSCs treated; and (5) HGF-MSCs plus G-CSF treated. After 3 weeks, hemodynamic changes, histomorphology, and angiogenesis were evaluated. To elucidate the molecular mechanisms of vascular remodeling and angiogenesis, serum levels of transforming growth factor (TGF)-β and endothelin-1 (ET-1) were measured, and the gene and protein expression levels of vascular cell adhesion molecule-1 (VCAM-1) and matrix metalloproteinase-9 (MMP-9) were determined. Compared with the PAH, MSC, and G-CSF groups, the HGF and HGF+G-CSF groups exhibited significantly reduced right ventricular hypertrophy and mean pulmonary arterial pressure (P < 0.05). Histologically, vessel muscularization or thickening and collagen deposition were also significantly decreased (P < 0.05). The number of vessels in the HGF+G-CSF group was higher than that in the other groups (P < 0.05). The TGF-β and ET-1 concentrations in the plasma of pulmonary hypertensive rats were markedly lower in the HGF and HGF+G-CSF groups (P < 0.05). Furthermore, HGF induced the expression of VCAM-1, and HGF treatment together with G-CSF synergistically stimulated MMP-9 expression. Transplanted HGF-MSCs combined with G-CSF potentially offer synergistic therapeutic benefit for the treatment of PAH.
Literature
3.
go back to reference D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Levy PS, Pietra GG, Reid LM, Reeves JT, Rich S, Vreim CE, Williams GW, Wu M (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349PubMedCrossRef D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Levy PS, Pietra GG, Reid LM, Reeves JT, Rich S, Vreim CE, Williams GW, Wu M (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349PubMedCrossRef
4.
go back to reference Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon MD, Frye RL (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70(4):580–587PubMedCrossRef Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon MD, Frye RL (1984) Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70(4):580–587PubMedCrossRef
5.
go back to reference Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M (2000) Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 6(6):698–702PubMedCrossRef Cowan KN, Heilbut A, Humpl T, Lam C, Ito S, Rabinovitch M (2000) Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat Med 6(6):698–702PubMedCrossRef
6.
go back to reference Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109(2):159–165PubMedCrossRef Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109(2):159–165PubMedCrossRef
7.
go back to reference Morse JH, Deng Z, Knowles JA (2001) Genetic aspects of pulmonary arterial hypertension. Ann Med 33(9):596–603PubMedCrossRef Morse JH, Deng Z, Knowles JA (2001) Genetic aspects of pulmonary arterial hypertension. Ann Med 33(9):596–603PubMedCrossRef
8.
9.
go back to reference Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15(2):427–438PubMedCrossRef Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15(2):427–438PubMedCrossRef
10.
go back to reference Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22(3):405–418PubMedCrossRef Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22(3):405–418PubMedCrossRef
11.
go back to reference Perros F, Dorfmuller P, Humbert M (2005) Current insights on the pathogenesis of pulmonary arterial hypertension. Semin Resp Crit Care Med 26(4):355–364CrossRef Perros F, Dorfmuller P, Humbert M (2005) Current insights on the pathogenesis of pulmonary arterial hypertension. Semin Resp Crit Care Med 26(4):355–364CrossRef
12.
go back to reference Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600PubMedCrossRef Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600PubMedCrossRef
13.
go back to reference Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105(25):3017–3024PubMedCrossRef Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105(25):3017–3024PubMedCrossRef
14.
go back to reference Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438PubMedCrossRef Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438PubMedCrossRef
15.
go back to reference Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108(7):889–895PubMedCrossRef Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N, Hino J, Harada-Shiba M, Okumura H, Tabata Y, Mochizuki N, Chiba Y, Nishioka K, Miyatake K, Asahara T, Hara H, Mori H (2003) Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 108(7):889–895PubMedCrossRef
16.
go back to reference Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96(4):442–450PubMedCrossRef Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96(4):442–450PubMedCrossRef
17.
go back to reference Maruyama H, Watanabe S, Kimura T, Liang J, Nagasawa T, Onodera M, Aonuma K, Yamaguchi I (2007) Granulocyte colony-stimulating factor prevents progression of monocrotaline-induced pulmonary arterial hypertension in rats. Circ J 71(1):138–143PubMedCrossRef Maruyama H, Watanabe S, Kimura T, Liang J, Nagasawa T, Onodera M, Aonuma K, Yamaguchi I (2007) Granulocyte colony-stimulating factor prevents progression of monocrotaline-induced pulmonary arterial hypertension in rats. Circ J 71(1):138–143PubMedCrossRef
18.
go back to reference Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251(4995):802–804PubMedCrossRef Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251(4995):802–804PubMedCrossRef
19.
go back to reference Ono M, Sawa Y, Mizuno S, Fukushima N, Ichikawa H, Bessho K, Nakamura T, Matsuda H (2004) Hepatocyte growth factor suppresses vascular medial hyperplasia and matrix accumulation in advanced pulmonary hypertension of rats. Circulation 110(18):2896–2902PubMedCrossRef Ono M, Sawa Y, Mizuno S, Fukushima N, Ichikawa H, Bessho K, Nakamura T, Matsuda H (2004) Hepatocyte growth factor suppresses vascular medial hyperplasia and matrix accumulation in advanced pulmonary hypertension of rats. Circulation 110(18):2896–2902PubMedCrossRef
20.
go back to reference Hiramine K, Sata N, Ido A, Kamimura R, Setoyama K, Arai K, Nuruki N, Tanaka Y, Uto H, Tsubouchi H (2011) Hepatocyte growth factor improves the survival of rats with pulmonary arterial hypertension via the amelioration of pulmonary hemodynamics. Int J Mol Med 27(4):497–502PubMed Hiramine K, Sata N, Ido A, Kamimura R, Setoyama K, Arai K, Nuruki N, Tanaka Y, Uto H, Tsubouchi H (2011) Hepatocyte growth factor improves the survival of rats with pulmonary arterial hypertension via the amelioration of pulmonary hemodynamics. Int J Mol Med 27(4):497–502PubMed
21.
go back to reference Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26(9):885–894PubMed Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26(9):885–894PubMed
22.
go back to reference Tajima F, Tsuchiya H, Nishikawa K, Kataoka M, Hisatome I, Shiota G (2010) Hepatocyte growth factor mobilizes and recruits hematopoietic progenitor cells into liver through a stem cell factor-mediated mechanism. Hepatol Res 40(7):711–719PubMedCrossRef Tajima F, Tsuchiya H, Nishikawa K, Kataoka M, Hisatome I, Shiota G (2010) Hepatocyte growth factor mobilizes and recruits hematopoietic progenitor cells into liver through a stem cell factor-mediated mechanism. Hepatol Res 40(7):711–719PubMedCrossRef
23.
go back to reference Guo YH, He JG, Wu JL, Yang L, Zhang DS, Tan XY, Qi RD (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy 10(8):857–867PubMedCrossRef Guo YH, He JG, Wu JL, Yang L, Zhang DS, Tan XY, Qi RD (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy 10(8):857–867PubMedCrossRef
24.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRef
25.
go back to reference Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181(1):67–73PubMedCrossRef Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181(1):67–73PubMedCrossRef
26.
go back to reference Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, Zhang QW, Wang H, Jia XX, Wang LS (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8(3):467–474PubMedCrossRef Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, Zhang QW, Wang H, Jia XX, Wang LS (2003) Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther 8(3):467–474PubMedCrossRef
27.
go back to reference Zhang YR, Wu DL, Lao MF, Bi JJ, Wu CT (2003) The comparative efficacy of recombinant adenovirus and plasmid in treatment of myocardial ischemia. Bull Acad Military Med Sci 27:16–18 Zhang YR, Wu DL, Lao MF, Bi JJ, Wu CT (2003) The comparative efficacy of recombinant adenovirus and plasmid in treatment of myocardial ischemia. Bull Acad Military Med Sci 27:16–18
28.
go back to reference Lu ZZ, Ni F, Hu ZB, Wang L, Wang H, Zhang QW, Huang WR, Wu CT, Wang LS (2006) Efficient gene transfer into hematopoietic cells by a retargeting adenoviral vector system with a chimeric fiber of adenovirus serotype 5 and 11p. Exp Hematol 34(9):1171–1182PubMedCrossRef Lu ZZ, Ni F, Hu ZB, Wang L, Wang H, Zhang QW, Huang WR, Wu CT, Wang LS (2006) Efficient gene transfer into hematopoietic cells by a retargeting adenoviral vector system with a chimeric fiber of adenovirus serotype 5 and 11p. Exp Hematol 34(9):1171–1182PubMedCrossRef
29.
go back to reference Guo Y, He J, Wu J, Yang L, Dai S, Tan X, Liang L (2008) Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 39(2):179–188PubMedCrossRef Guo Y, He J, Wu J, Yang L, Dai S, Tan X, Liang L (2008) Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res 39(2):179–188PubMedCrossRef
30.
go back to reference Tan XY, He JG (2009) The remodeling of connexin in the hypertrophied right ventricular in pulmonary arterial hypertension and the effect of a dual ET receptor antagonist (bosentan). Pathol Res Pract 205(7):473–482PubMedCrossRef Tan XY, He JG (2009) The remodeling of connexin in the hypertrophied right ventricular in pulmonary arterial hypertension and the effect of a dual ET receptor antagonist (bosentan). Pathol Res Pract 205(7):473–482PubMedCrossRef
31.
go back to reference Ono M, Sawa Y, Matsumoto K, Nakamura T, Kaneda Y, Matsuda H (2002) In vivo gene transfection with hepatocyte growth factor via the pulmonary artery induces angiogenesis in the rat lung. Circulation 106(12 Suppl 1):I264–I269PubMed Ono M, Sawa Y, Matsumoto K, Nakamura T, Kaneda Y, Matsuda H (2002) In vivo gene transfection with hepatocyte growth factor via the pulmonary artery induces angiogenesis in the rat lung. Circulation 106(12 Suppl 1):I264–I269PubMed
32.
go back to reference O’Blenes SB, Fischer S, McIntyre B, Keshavjee S, Rabinovitch M (2001) Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. J Thorac Cardiovasc Surg 121(2):279–289PubMedCrossRef O’Blenes SB, Fischer S, McIntyre B, Keshavjee S, Rabinovitch M (2001) Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. J Thorac Cardiovasc Surg 121(2):279–289PubMedCrossRef
33.
go back to reference Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353PubMedCrossRef Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353PubMedCrossRef
34.
go back to reference Huang SD, Liu XH, Bai CG, Lu FL, Yuan Y, Gong DJ, Xu ZY (2007) Synergistic effect of fibronectin and hepatocyte growth factor on stable cell-matrix adhesion, re-endothelialization, and reconstitution in developing tissue-engineered heart valves. Heart Vessels 22(2):116–122PubMedCrossRef Huang SD, Liu XH, Bai CG, Lu FL, Yuan Y, Gong DJ, Xu ZY (2007) Synergistic effect of fibronectin and hepatocyte growth factor on stable cell-matrix adhesion, re-endothelialization, and reconstitution in developing tissue-engineered heart valves. Heart Vessels 22(2):116–122PubMedCrossRef
35.
go back to reference Kmiecik TE, Keller JR, Rosen E, Vande Woude GF (1992) Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood 80(10):2454–2457PubMed Kmiecik TE, Keller JR, Rosen E, Vande Woude GF (1992) Hepatocyte growth factor is a synergistic factor for the growth of hematopoietic progenitor cells. Blood 80(10):2454–2457PubMed
36.
go back to reference Jalili A, Shirvaikar N, Marquez-Curtis LA, Turner AR, Janowska-Wieczorek A (2010) The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells Dev 19(8):1143–1151PubMedCrossRef Jalili A, Shirvaikar N, Marquez-Curtis LA, Turner AR, Janowska-Wieczorek A (2010) The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells Dev 19(8):1143–1151PubMedCrossRef
38.
go back to reference Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S (2003) Endothelial progenitor cells: new hope for a broken heart. Circulation 107(24):3093–3100PubMedCrossRef Szmitko PE, Fedak PW, Weisel RD, Stewart DJ, Kutryk MJ, Verma S (2003) Endothelial progenitor cells: new hope for a broken heart. Circulation 107(24):3093–3100PubMedCrossRef
39.
go back to reference Xia L, Zhu JH, Qiu FY, Yang Y, Xie XD, Wang XX, Chen JZ, Fu GS (2009) Senescent endothelial progenitor cells from dogs with pulmonary arterial hypertension: a before-after self-controlled study. J Physiol Sci 59(6):429–437PubMedCrossRef Xia L, Zhu JH, Qiu FY, Yang Y, Xie XD, Wang XX, Chen JZ, Fu GS (2009) Senescent endothelial progenitor cells from dogs with pulmonary arterial hypertension: a before-after self-controlled study. J Physiol Sci 59(6):429–437PubMedCrossRef
40.
go back to reference Haug C, Schmid-Kotsas A, Zorn U, Bachem MG, Schuett S, Gruenert A, Rozdzinski E (2000) Hepatocyte growth factor is upregulated by low-density lipoproteins and inhibits endothelin-1 release. Am J Physiol-Heart C 279(6):H2865–H2871 Haug C, Schmid-Kotsas A, Zorn U, Bachem MG, Schuett S, Gruenert A, Rozdzinski E (2000) Hepatocyte growth factor is upregulated by low-density lipoproteins and inhibits endothelin-1 release. Am J Physiol-Heart C 279(6):H2865–H2871
41.
go back to reference Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Chatterjee S, Berry MF, Burdick J, Gardner TJ, Sweeney HL (2003) Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 108(Suppl 1):II230–II236PubMed Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Chatterjee S, Berry MF, Burdick J, Gardner TJ, Sweeney HL (2003) Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 108(Suppl 1):II230–II236PubMed
42.
go back to reference Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol 37(6):375–536CrossRef Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol 37(6):375–536CrossRef
43.
go back to reference Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117PubMedCrossRef Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117PubMedCrossRef
44.
go back to reference Renault MA, Losordo DW (2007) The matrix revolutions: matrix metalloproteinase, vasculogenesis, and ischemic tissue repair. Circ Res 100(6):749–750PubMedCrossRef Renault MA, Losordo DW (2007) The matrix revolutions: matrix metalloproteinase, vasculogenesis, and ischemic tissue repair. Circ Res 100(6):749–750PubMedCrossRef
Metadata
Title
The synergistic therapeutic effect of hepatocyte growth factor and granulocyte colony-stimulating factor on pulmonary hypertension in rats
Authors
Yinghua Guo
Longxiang Su
Yinghui Li
Na Guo
Lixin Xie
Dong Zhang
Xiaojun Zhang
Hongxia Li
Guizhi Zhang
Yajuan Wang
Changting Liu
Publication date
01-07-2014
Publisher
Springer Japan
Published in
Heart and Vessels / Issue 4/2014
Print ISSN: 0910-8327
Electronic ISSN: 1615-2573
DOI
https://doi.org/10.1007/s00380-013-0395-1

Other articles of this Issue 4/2014

Heart and Vessels 4/2014 Go to the issue