Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2010

Open Access 01-12-2010 | Research

The role of tibialis posterior fatigue on foot kinematics during walking

Authors: Michael B Pohl, Melissa Rabbito, Reed Ferber

Published in: Journal of Foot and Ankle Research | Issue 1/2010

Login to get access

Abstract

Background

The purpose of this study was to investigate the effect of localised tibialis posterior muscle fatigue on foot kinematics during walking. It was hypothesised that following fatigue, subjects would demonstrate greater forefoot and rearfoot motion during walking. It was also postulated that the magnitude of the change in rearfoot motion would be associated with standing anatomical rearfoot posture.

Methods

Twenty-nine subjects underwent an exercise fatigue protocol aimed at reducing the force output of tibialis posterior. An eight camera motion analysis system was used to evaluate 3D foot kinematics during treadmill walking both pre- and post-fatigue. The anatomical rearfoot angle was measured during standing prior to the fatigue protocol using a goniometer.

Results

Peak rearfoot eversion remained unchanged following the fatigue protocol. Although increases in rearfoot eversion excursion were observed following fatigue, these changes were of a magnitude of questionable clinical significance (<1.0°). The magnitude of the change in rearfoot eversion due to fatigue was not associated with the anatomical measurement of standing rearfoot angle. No substantial changes in forefoot kinematics were observed following the fatigue protocol.

Conclusions

These data indicate that reduced force output of the tibialis posterior muscle did not alter rearfoot and forefoot motion during gait. The anatomical structure of the rearfoot was not associated with the dependence of muscular activity that an individual requires to maintain normal rearfoot kinematics during gait.
Appendix
Available only for authorised users
Literature
1.
go back to reference Feltner ME, Macrae HSH, Macrae PG, Turner NS, Hartman CA, Summers ML, Welch MD: Strength training effects on rearfoot motion in running. Med Sci Sports Exerc. 1994, 26: 1021-1027.CrossRefPubMed Feltner ME, Macrae HSH, Macrae PG, Turner NS, Hartman CA, Summers ML, Welch MD: Strength training effects on rearfoot motion in running. Med Sci Sports Exerc. 1994, 26: 1021-1027.CrossRefPubMed
2.
go back to reference Hicks JH: The 3 weight-bearing mechanisms of the foot. Anatomical Record. 1960, 136: 210-210. Hicks JH: The 3 weight-bearing mechanisms of the foot. Anatomical Record. 1960, 136: 210-210.
3.
go back to reference Jennings MM, Christensen JC: The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency. J Foot Ankle Surg. 2008, 47: 219-224. 10.1053/j.jfas.2008.02.002.CrossRefPubMed Jennings MM, Christensen JC: The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency. J Foot Ankle Surg. 2008, 47: 219-224. 10.1053/j.jfas.2008.02.002.CrossRefPubMed
4.
go back to reference Thordarson DB, Schmotzer H, Chon J, Peters J: Dynamic support of the human longitudinal arch - a biomechanical evaluation. Clin Orthop Rel Res. 1995, 165-172. Thordarson DB, Schmotzer H, Chon J, Peters J: Dynamic support of the human longitudinal arch - a biomechanical evaluation. Clin Orthop Rel Res. 1995, 165-172.
5.
go back to reference Kitaoka HB, Luo ZP, An KN: Effect of the posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int. 1997, 18: 43-46.CrossRefPubMed Kitaoka HB, Luo ZP, An KN: Effect of the posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int. 1997, 18: 43-46.CrossRefPubMed
6.
go back to reference O'Connor KM, Hamill J: The role of selected extrinsic foot muscles during running. Clin Biomech. 2004, 19: 71-77. 10.1016/j.clinbiomech.2003.09.001.CrossRef O'Connor KM, Hamill J: The role of selected extrinsic foot muscles during running. Clin Biomech. 2004, 19: 71-77. 10.1016/j.clinbiomech.2003.09.001.CrossRef
7.
go back to reference Ness ME, Long J, Marks R, Harris G: Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture. 2008, 27: 331-339. 10.1016/j.gaitpost.2007.04.014.CrossRefPubMed Ness ME, Long J, Marks R, Harris G: Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture. 2008, 27: 331-339. 10.1016/j.gaitpost.2007.04.014.CrossRefPubMed
8.
go back to reference Rattanaprasert U, Smith R, Sullivan M, Gilleard W: Three-dimensional kinematics of the forefoot, rearfoot, and leg without the function of tibialis posterior in comparison with normals during stance phase of walking. Clin Biomech. 1999, 14: 14-23. 10.1016/S0268-0033(98)00034-5.CrossRef Rattanaprasert U, Smith R, Sullivan M, Gilleard W: Three-dimensional kinematics of the forefoot, rearfoot, and leg without the function of tibialis posterior in comparison with normals during stance phase of walking. Clin Biomech. 1999, 14: 14-23. 10.1016/S0268-0033(98)00034-5.CrossRef
9.
go back to reference Tome J, Nawoczenski DA, Flemister A, Houck J: Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. J Orthop Sports Phys Ther. 2006, 36: 635-644.CrossRefPubMed Tome J, Nawoczenski DA, Flemister A, Houck J: Comparison of foot kinematics between subjects with posterior tibialis tendon dysfunction and healthy controls. J Orthop Sports Phys Ther. 2006, 36: 635-644.CrossRefPubMed
10.
go back to reference Christina KA, White SC, Gilchrist LA: Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Movement Sci. 2001, 20: 257-276. 10.1016/S0167-9457(01)00048-3.CrossRef Christina KA, White SC, Gilchrist LA: Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Movement Sci. 2001, 20: 257-276. 10.1016/S0167-9457(01)00048-3.CrossRef
11.
go back to reference Kulig K, Burnfield JM, Requejo SM, Sperry M, Terk M: Selective activation of tibialis posterior: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2004, 36: 862-867. 10.1249/01.MSS.0000126385.12402.2E.CrossRefPubMed Kulig K, Burnfield JM, Requejo SM, Sperry M, Terk M: Selective activation of tibialis posterior: evaluation by magnetic resonance imaging. Med Sci Sports Exerc. 2004, 36: 862-867. 10.1249/01.MSS.0000126385.12402.2E.CrossRefPubMed
12.
go back to reference Donatelli R, Wooden M, Ekedahl SR, Wilkes JS, Cooper J, Bush AJ: Relationship between static and dynamic foot postures in professional baseball players. J Orthop Sports Phys Ther. 1999, 29: 316-325.CrossRefPubMed Donatelli R, Wooden M, Ekedahl SR, Wilkes JS, Cooper J, Bush AJ: Relationship between static and dynamic foot postures in professional baseball players. J Orthop Sports Phys Ther. 1999, 29: 316-325.CrossRefPubMed
13.
go back to reference Cornwall MW, McPoil TG: Influence of rearfoot postural alignment on rearfoot motion during walking. Foot. 2004, 14: 133-138. 10.1016/j.foot.2004.02.003.CrossRef Cornwall MW, McPoil TG: Influence of rearfoot postural alignment on rearfoot motion during walking. Foot. 2004, 14: 133-138. 10.1016/j.foot.2004.02.003.CrossRef
14.
go back to reference Murley GS, Menz HB, Landorf KB: Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009, 2: 35-10.1186/1757-1146-2-35.CrossRefPubMedPubMedCentral Murley GS, Menz HB, Landorf KB: Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009, 2: 35-10.1186/1757-1146-2-35.CrossRefPubMedPubMedCentral
15.
go back to reference Pohl MB, Messenger N, Buckley JG: Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait. Gait Posture. 2007, 25: 295-302. 10.1016/j.gaitpost.2006.04.012.CrossRefPubMed Pohl MB, Messenger N, Buckley JG: Forefoot, rearfoot and shank coupling: effect of variations in speed and mode of gait. Gait Posture. 2007, 25: 295-302. 10.1016/j.gaitpost.2006.04.012.CrossRefPubMed
16.
go back to reference Jonson SR, Gross MT: Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J Orthop Sports Phys Ther. 1997, 25: 253-263.CrossRefPubMed Jonson SR, Gross MT: Intraexaminer reliability, interexaminer reliability, and mean values for nine lower extremity skeletal measures in healthy naval midshipmen. J Orthop Sports Phys Ther. 1997, 25: 253-263.CrossRefPubMed
17.
go back to reference Pohl MB, Messenger N, Buckley JG: Changes in foot and lower limb coupling due to systematic variations in step width. Clin Biomech. 2006, 21: 175-183. 10.1016/j.clinbiomech.2005.09.005.CrossRef Pohl MB, Messenger N, Buckley JG: Changes in foot and lower limb coupling due to systematic variations in step width. Clin Biomech. 2006, 21: 175-183. 10.1016/j.clinbiomech.2005.09.005.CrossRef
18.
go back to reference Kulig K, Reischl SF, Pomrantz AB, Burnfield JM, Mais-Requejo S, Thordarson DB, Smith RW: Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercise: a randomized controlled trial. Physl Ther. 2009, 89: 26-37.CrossRef Kulig K, Reischl SF, Pomrantz AB, Burnfield JM, Mais-Requejo S, Thordarson DB, Smith RW: Nonsurgical management of posterior tibial tendon dysfunction with orthoses and resistive exercise: a randomized controlled trial. Physl Ther. 2009, 89: 26-37.CrossRef
19.
go back to reference Zeni JA, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008, 27: 710-714. 10.1016/j.gaitpost.2007.07.007.CrossRefPubMed Zeni JA, Richards JG, Higginson JS: Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008, 27: 710-714. 10.1016/j.gaitpost.2007.07.007.CrossRefPubMed
20.
go back to reference Cheung RTH, Ng GYF: Efficacy of motion control shoes for reducing excessive rearfoot motion in fatigued runners. Phys Ther Sport. 2007, 8: 75-81. 10.1016/j.ptsp.2006.12.002.CrossRef Cheung RTH, Ng GYF: Efficacy of motion control shoes for reducing excessive rearfoot motion in fatigued runners. Phys Ther Sport. 2007, 8: 75-81. 10.1016/j.ptsp.2006.12.002.CrossRef
21.
go back to reference Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR: Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007, 25: 555-564. 10.1016/j.gaitpost.2006.06.008.CrossRefPubMed Ringleb SI, Kavros SJ, Kotajarvi BR, Hansen DK, Kitaoka HB, Kaufman KR: Changes in gait associated with acute stage II posterior tibial tendon dysfunction. Gait Posture. 2007, 25: 555-564. 10.1016/j.gaitpost.2006.06.008.CrossRefPubMed
22.
go back to reference Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M: Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg. 2003, 42: 327-333. 10.1053/j.jfas.2003.10.003.CrossRefPubMed Fiolkowski P, Brunt D, Bishop M, Woo R, Horodyski M: Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot Ankle Surg. 2003, 42: 327-333. 10.1053/j.jfas.2003.10.003.CrossRefPubMed
23.
go back to reference Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J: Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kines. 2008, 18: 420-425. 10.1016/j.jelekin.2006.11.004.CrossRef Headlee DL, Leonard JL, Hart JM, Ingersoll CD, Hertel J: Fatigue of the plantar intrinsic foot muscles increases navicular drop. J Electromyogr Kines. 2008, 18: 420-425. 10.1016/j.jelekin.2006.11.004.CrossRef
24.
go back to reference Kitaoka HB, Ahn TK, Luo ZP, An KN: Stability of the arch of the foot. Foot Ankle Int. 1997, 18: 644-648.CrossRefPubMed Kitaoka HB, Ahn TK, Luo ZP, An KN: Stability of the arch of the foot. Foot Ankle Int. 1997, 18: 644-648.CrossRefPubMed
Metadata
Title
The role of tibialis posterior fatigue on foot kinematics during walking
Authors
Michael B Pohl
Melissa Rabbito
Reed Ferber
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2010
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-3-6

Other articles of this Issue 1/2010

Journal of Foot and Ankle Research 1/2010 Go to the issue