Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 1/2019

01-02-2019 | ORIGINAL ARTICLE

The Role of Tauroursodeoxycholic Acid on Dedifferentiation of Vascular Smooth Muscle Cells by Modulation of Endoplasmic Reticulum Stress and as an Oral Drug Inhibiting In-Stent Restenosis

Authors: Hangqi Luo, Changzuan Zhou, Jufang Chi, Sunlei Pan, Hui Lin, Feidan Gao, Tingjuan Ni, Liping Meng, Jie Zhang, Chengjian Jiang, Zheng Ji, Haitao Lv, Hangyuan Guo

Published in: Cardiovascular Drugs and Therapy | Issue 1/2019

Login to get access

Abstract

Purpose

The role of endoplasmic reticulum (ER) stress in cardiovascular disease is now recognized. Tauroursodeoxycholic acid (TUDCA) is known to have cardiovascular protective effects by decreasing ER stress. This study aimed to assess the ability of TUDCA to decrease ER stress, inhibit dedifferentiation of vascular smooth muscle cells (VSMCs), and reduce in-stent restenosis.

Methods

The effect of TUDCA on dedifferentiation of VSMCs and ER stress was investigated in vitro using wound-healing assays, MTT assays, and western blotting. For in vivo studies, 18 rabbits were fed an atherogenic diet to induce atheroma formation. Bare metal stents (BMS), BMS+TUDCA or Firebird stents were implanted in the left common carotid artery. Rabbits were euthanized after 28 days and processed for scanning electron microscope (SEM), histological examination (HE), and immunohistochemistry.

Results

In vitro TUDCA (10–1000 μmol/L) treatment significantly inhibited platelet-derived growth factor (PDGF)-BB-induced proliferation and migration in VSMCs in a concentration-dependent manner and decreased ER stress markers (IRE1, XBP1, KLF4, and GRP78). In vivo, we confirmed no significant difference in neointimal coverage on three stents surfaces; neointimal was significantly lower with BMS+TUDCA (1.6 ± 0.2 mm2) compared with Firebird (1.90 ± 0.1 mm2) and BMS (2.3 ± 0.1 mm2). Percent stenosis was lowest for BMS+TUDCA, then Firebird, and was significantly higher with BMS (28 ± 4%, 35 ± 7%, 40 ± 1%; respectively; P < 0.001). TUDCA treatment decreased ER stress in the BMS+TUDCA group compared with BMS.

Conclusions

TUDCA inhibited dedifferentiation of VSMCs by decreasing ER stress and reduced in-stent restenosis, possibly through downregulation of the IRE1/XBP1 signaling pathway.
Literature
1.
go back to reference Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80.CrossRefPubMed Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–80.CrossRefPubMed
2.
go back to reference Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.CrossRefPubMed Palmerini T, Benedetto U, Biondi-Zoccai G, Della Riva D, Bacchi-Reggiani L, Smits PC, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol. 2015;65:2496–507.CrossRefPubMed
3.
go back to reference Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J. 2009;73:615–21.CrossRefPubMed Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J. 2009;73:615–21.CrossRefPubMed
4.
go back to reference Kaul U, Bangalore S, Seth A, Arambam P, Abhaichand RK, Patel TM, et al. Paclitaxel-eluting versus everolimus-eluting coronary stents in diabetes. N Engl J Med. 2015;373:1709–19.CrossRefPubMed Kaul U, Bangalore S, Seth A, Arambam P, Abhaichand RK, Patel TM, et al. Paclitaxel-eluting versus everolimus-eluting coronary stents in diabetes. N Engl J Med. 2015;373:1709–19.CrossRefPubMed
5.
go back to reference de la Torre Hernandez JM, Alfonso F, Martin Yuste V, Sanchez Recalde A, Jimenez Navarro MF, Perez de Prado A, et al. Comparison of paclitaxel and everolimus-eluting stents in st-segment elevation myocardial infarction and influence of thrombectomy on outcomes. Estrofa-im study. Rev Esp Cardiol (Engl Ed). 2014;67:999–1006.CrossRef de la Torre Hernandez JM, Alfonso F, Martin Yuste V, Sanchez Recalde A, Jimenez Navarro MF, Perez de Prado A, et al. Comparison of paclitaxel and everolimus-eluting stents in st-segment elevation myocardial infarction and influence of thrombectomy on outcomes. Estrofa-im study. Rev Esp Cardiol (Engl Ed). 2014;67:999–1006.CrossRef
6.
go back to reference Pan M, Burzotta F, Trani C, Medina A, Suarez de Lezo J, Niccoli G, et al. Three-year follow-up of patients with bifurcation lesions treated with sirolimus- or everolimus-eluting stents: seaside and corpal cooperative study. Rev Esp Cardiol (Engl Ed). 2014;67:797–803.CrossRef Pan M, Burzotta F, Trani C, Medina A, Suarez de Lezo J, Niccoli G, et al. Three-year follow-up of patients with bifurcation lesions treated with sirolimus- or everolimus-eluting stents: seaside and corpal cooperative study. Rev Esp Cardiol (Engl Ed). 2014;67:797–803.CrossRef
7.
go back to reference Joner M, Nakazawa G, Finn AV, Quee SC, Coleman L, Acampado E, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52:333–42.CrossRefPubMed Joner M, Nakazawa G, Finn AV, Quee SC, Coleman L, Acampado E, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol. 2008;52:333–42.CrossRefPubMed
8.
go back to reference Zhang DP, Ge YG, Ni ZH. Very late angiographic stent thrombosis after sirolimus-eluting stent implantation at 54 months. Zhonghua Xin Xue Guan Bing Za Zhi. 2008;36:176–7.PubMed Zhang DP, Ge YG, Ni ZH. Very late angiographic stent thrombosis after sirolimus-eluting stent implantation at 54 months. Zhonghua Xin Xue Guan Bing Za Zhi. 2008;36:176–7.PubMed
9.
go back to reference Takahashi S, Kaneda H, Tanaka S, Miyashita Y, Shiono T, Taketani Y, et al. Late angiographic stent thrombosis after sirolimus-eluting stent implantation. Circ J. 2007;71:226–8.CrossRefPubMed Takahashi S, Kaneda H, Tanaka S, Miyashita Y, Shiono T, Taketani Y, et al. Late angiographic stent thrombosis after sirolimus-eluting stent implantation. Circ J. 2007;71:226–8.CrossRefPubMed
10.
go back to reference Kuriyama N, Kobayashi Y, Nakama T, Mine D, Nishihira K, Shimomura M, et al. Late restenosis following sirolimus-eluting stent implantation. JACC Cardiovasc Interv. 2011;4:123–8.CrossRefPubMed Kuriyama N, Kobayashi Y, Nakama T, Mine D, Nishihira K, Shimomura M, et al. Late restenosis following sirolimus-eluting stent implantation. JACC Cardiovasc Interv. 2011;4:123–8.CrossRefPubMed
11.
go back to reference Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, et al. Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-cypher registry. Circulation. 2012;125:584–91.CrossRefPubMed Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, et al. Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: five-year outcome of the j-cypher registry. Circulation. 2012;125:584–91.CrossRefPubMed
12.
go back to reference Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.CrossRefPubMed Park SJ, Kang SJ, Virmani R, Nakano M, Ueda Y. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012;59:2051–7.CrossRefPubMed
13.
go back to reference Shah R, Ramos-Bondy B, Mizeracki A. Risk of stent thrombosis with bioresorbable vascular scaffolds. Lancet. 2016;387:1903.CrossRefPubMed Shah R, Ramos-Bondy B, Mizeracki A. Risk of stent thrombosis with bioresorbable vascular scaffolds. Lancet. 2016;387:1903.CrossRefPubMed
14.
go back to reference Poupon RE, Poupon R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The udca-pbc study group. N Engl J Med. 1994;330:1342–7.CrossRefPubMed Poupon RE, Poupon R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The udca-pbc study group. N Engl J Med. 1994;330:1342–7.CrossRefPubMed
15.
go back to reference Rudolph G, Endele R, Senn M, Stiehl A. Effect of ursodeoxycholic acid on the kinetics of cholic acid and chenodeoxycholic acid in patients with primary sclerosing cholangitis. Hepatology. 1993;17:1028–32.CrossRefPubMed Rudolph G, Endele R, Senn M, Stiehl A. Effect of ursodeoxycholic acid on the kinetics of cholic acid and chenodeoxycholic acid in patients with primary sclerosing cholangitis. Hepatology. 1993;17:1028–32.CrossRefPubMed
16.
go back to reference Luketic VA, Sanyal AJ. The current status of ursodeoxycholate in the treatment of chronic cholestatic liver disease. Gastroenterologist. 1994;2:74–9.PubMed Luketic VA, Sanyal AJ. The current status of ursodeoxycholate in the treatment of chronic cholestatic liver disease. Gastroenterologist. 1994;2:74–9.PubMed
17.
go back to reference Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, et al. New mechanism of rosiglitazone to reduce neointimal hyperplasia: activation of glycogen synthase kinase-3beta followed by inhibition of mmp-9. Arterioscler Thromb Vasc Biol. 2009;29:472–9.CrossRefPubMed Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, et al. New mechanism of rosiglitazone to reduce neointimal hyperplasia: activation of glycogen synthase kinase-3beta followed by inhibition of mmp-9. Arterioscler Thromb Vasc Biol. 2009;29:472–9.CrossRefPubMed
18.
go back to reference Makino I, Tanaka H. From a choleretic to an immunomodulator: historical review of ursodeoxycholic acid as a medicament. J Gastroenterol Hepatol. 1998;13:659–64.CrossRefPubMed Makino I, Tanaka H. From a choleretic to an immunomodulator: historical review of ursodeoxycholic acid as a medicament. J Gastroenterol Hepatol. 1998;13:659–64.CrossRefPubMed
19.
go back to reference Vang S, Longley K, Steer CJ, Low WC. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med. 2014;3:58–69.CrossRefPubMedPubMedCentral Vang S, Longley K, Steer CJ, Low WC. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med. 2014;3:58–69.CrossRefPubMedPubMedCentral
20.
go back to reference Cho JG, Lee JH, Hong SH, Lee HN, Kim CM, Kim SY, et al. Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells. 2015;33:792–805.CrossRefPubMed Cho JG, Lee JH, Hong SH, Lee HN, Kim CM, Kim SY, et al. Tauroursodeoxycholic acid, a bile acid, promotes blood vessel repair by recruiting vasculogenic progenitor cells. Stem Cells. 2015;33:792–805.CrossRefPubMed
21.
go back to reference Ma J, Nakajima T, Iida H, Iwasawa K, Terasawa K, Oonuma H, et al. Inhibitory effects of ursodeoxycholic acid on the induction of nitric oxide synthase in vascular smooth muscle cells. Eur J Pharmacol. 2003;464:79–86.CrossRefPubMed Ma J, Nakajima T, Iida H, Iwasawa K, Terasawa K, Oonuma H, et al. Inhibitory effects of ursodeoxycholic acid on the induction of nitric oxide synthase in vascular smooth muscle cells. Eur J Pharmacol. 2003;464:79–86.CrossRefPubMed
22.
go back to reference Lee WY, Han SH, Cho TS, Yoo YH, Lee SM. Effect of ursodeoxycholic acid on ischemia/reperfusion injury in isolated rat heart. Arch Pharm Res. 1999;22:479–84.CrossRefPubMed Lee WY, Han SH, Cho TS, Yoo YH, Lee SM. Effect of ursodeoxycholic acid on ischemia/reperfusion injury in isolated rat heart. Arch Pharm Res. 1999;22:479–84.CrossRefPubMed
23.
go back to reference Kim SY, Kwon YW, Jung IL, Sung JH, Park SG. Tauroursodeoxycholate (tudca) inhibits neointimal hyperplasia by suppression of erk via pkcalpha-mediated mkp-1 induction. Cardiovasc Res. 2011;92:307–16.CrossRefPubMed Kim SY, Kwon YW, Jung IL, Sung JH, Park SG. Tauroursodeoxycholate (tudca) inhibits neointimal hyperplasia by suppression of erk via pkcalpha-mediated mkp-1 induction. Cardiovasc Res. 2011;92:307–16.CrossRefPubMed
24.
go back to reference Fan L, Chen LL, Lin CG, Peng YF, Zheng XC, Luo YK, et al. Firebird and cypher sirolimus-eluting stents and bare metal stents in treatment of very long coronary lesions. Chin Med J. 2008;121:1518–23.CrossRefPubMed Fan L, Chen LL, Lin CG, Peng YF, Zheng XC, Luo YK, et al. Firebird and cypher sirolimus-eluting stents and bare metal stents in treatment of very long coronary lesions. Chin Med J. 2008;121:1518–23.CrossRefPubMed
25.
go back to reference Gao Z, Yang YJ, Chen JL, Qiao SB, Xu B, Qin XW, et al. Effects of sirolimus-eluting stent and the paclitaxel-eluting stent: a three-year follow-up study. Zhonghua Yi Xue Za Zhi. 2008;88:1811–4.PubMed Gao Z, Yang YJ, Chen JL, Qiao SB, Xu B, Qin XW, et al. Effects of sirolimus-eluting stent and the paclitaxel-eluting stent: a three-year follow-up study. Zhonghua Yi Xue Za Zhi. 2008;88:1811–4.PubMed
26.
go back to reference Gao H, Yan HB, Zhu XL, Li N, Ai H, Wang J, et al. Firebird sirolimus eluting stent versus bare mental stent in patients with st-segment elevation myocardial infarction. Chin Med J. 2007;120:863–7.CrossRefPubMed Gao H, Yan HB, Zhu XL, Li N, Ai H, Wang J, et al. Firebird sirolimus eluting stent versus bare mental stent in patients with st-segment elevation myocardial infarction. Chin Med J. 2007;120:863–7.CrossRefPubMed
27.
go back to reference Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, et al. Down-regulation of mir-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 2015;107:522–33.CrossRefPubMed Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, et al. Down-regulation of mir-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res. 2015;107:522–33.CrossRefPubMed
28.
go back to reference Fitzgerald TN, Shepherd BR, Asada H, Teso D, Muto A, Fancher T, et al. Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the akt pathway. J Cell Physiol. 2008;216:389–95.CrossRefPubMed Fitzgerald TN, Shepherd BR, Asada H, Teso D, Muto A, Fancher T, et al. Laminar shear stress stimulates vascular smooth muscle cell apoptosis via the akt pathway. J Cell Physiol. 2008;216:389–95.CrossRefPubMed
29.
go back to reference Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A, Capogrossi MC. Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation. 2000;102:225–30.CrossRefPubMed Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A, Capogrossi MC. Shear stress downregulation of platelet-derived growth factor receptor-beta and matrix metalloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation. 2000;102:225–30.CrossRefPubMed
30.
go back to reference Garanich JS, Pahakis M, Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am J Physiol Heart Circ Physiol. 2005;288:H2244–52.CrossRefPubMed Garanich JS, Pahakis M, Tarbell JM. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am J Physiol Heart Circ Physiol. 2005;288:H2244–52.CrossRefPubMed
31.
go back to reference Wang CF, Yuan JR, Qin D, Gu JF, Zhao BJ, Zhang L, et al. Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats. J Ethnopharmacol. 2016;185:162–70.CrossRefPubMed Wang CF, Yuan JR, Qin D, Gu JF, Zhao BJ, Zhang L, et al. Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats. J Ethnopharmacol. 2016;185:162–70.CrossRefPubMed
32.
go back to reference Chen S, Liu B, Kong D, Li S, Li C, Wang H, et al. Atorvastatin calcium inhibits phenotypic modulation of pdgf-bb-induced vsmcs via down-regulation the akt signaling pathway. PLoS One. 2015;10:e0122577.CrossRefPubMedPubMedCentral Chen S, Liu B, Kong D, Li S, Li C, Wang H, et al. Atorvastatin calcium inhibits phenotypic modulation of pdgf-bb-induced vsmcs via down-regulation the akt signaling pathway. PLoS One. 2015;10:e0122577.CrossRefPubMedPubMedCentral
33.
go back to reference Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res. 2008;38:123–31.PubMed Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res. 2008;38:123–31.PubMed
34.
go back to reference Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:318–28.CrossRefPubMed Beuers U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:318–28.CrossRefPubMed
35.
go back to reference Hua Y, Kandadi MR, Zhu M, Ren J, Sreejayan N. Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages. J Cardiovasc Pharmacol. 2010;55:49–55.CrossRefPubMedPubMedCentral Hua Y, Kandadi MR, Zhu M, Ren J, Sreejayan N. Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages. J Cardiovasc Pharmacol. 2010;55:49–55.CrossRefPubMedPubMedCentral
36.
go back to reference Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce er stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.CrossRefPubMedPubMedCentral Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce er stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.CrossRefPubMedPubMedCentral
37.
go back to reference Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L, et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol. 2008;28:1014–22.CrossRefPubMed Chen Y, Liu CP, Xu KF, Mao XD, Lu YB, Fang L, et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol. 2008;28:1014–22.CrossRefPubMed
38.
go back to reference Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, et al. Cotranslational targeting of xbp1 protein to the membrane promotes cytoplasmic splicing of its own mrna. Mol Cell. 2009;34:191–200.CrossRefPubMed Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, et al. Cotranslational targeting of xbp1 protein to the membrane promotes cytoplasmic splicing of its own mrna. Mol Cell. 2009;34:191–200.CrossRefPubMed
39.
go back to reference Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, et al. Xbp 1-deficiency abrogates neointimal lesion of injured vessels via cross talk with the pdgf signaling. Arterioscler Thromb Vasc Biol. 2015;35:2134–44.CrossRefPubMed Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, et al. Xbp 1-deficiency abrogates neointimal lesion of injured vessels via cross talk with the pdgf signaling. Arterioscler Thromb Vasc Biol. 2015;35:2134–44.CrossRefPubMed
40.
go back to reference Ben Mosbah I, Alfany-Fernandez I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis. 2010;1:e52.CrossRefPubMed Ben Mosbah I, Alfany-Fernandez I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis. 2010;1:e52.CrossRefPubMed
41.
go back to reference Omar HR, Sprenker C, Karlnoski R, Camporesi EM, Mangar D. Late and very late drug-eluting stent thrombosis in the immediate postoperative period after antiplatelet withdrawal: a retrospective study. Ther Adv Cardiovasc Dis. 2014;8:185–92.CrossRefPubMed Omar HR, Sprenker C, Karlnoski R, Camporesi EM, Mangar D. Late and very late drug-eluting stent thrombosis in the immediate postoperative period after antiplatelet withdrawal: a retrospective study. Ther Adv Cardiovasc Dis. 2014;8:185–92.CrossRefPubMed
42.
go back to reference Franck C, Eisenberg MJ, Dourian T, Grandi SM, Filion KB. Very late stent thrombosis in patients with first-generation drug-eluting stents: a systematic review of reported cases. Int J Cardiol. 2014;177:1056–8.CrossRefPubMed Franck C, Eisenberg MJ, Dourian T, Grandi SM, Filion KB. Very late stent thrombosis in patients with first-generation drug-eluting stents: a systematic review of reported cases. Int J Cardiol. 2014;177:1056–8.CrossRefPubMed
43.
go back to reference Bechiri MY, Souteyrand G, Lefevre T, Trouillet C, Range G, Cayla G, et al. Characteristics of stent thrombosis in bifurcation lesions analysed by optical coherence tomography [J]. EuroIntervention. 2018;13(18):e2174–e2181. Bechiri MY, Souteyrand G, Lefevre T, Trouillet C, Range G, Cayla G, et al. Characteristics of stent thrombosis in bifurcation lesions analysed by optical coherence tomography [J]. EuroIntervention. 2018;13(18):e2174–e2181.
Metadata
Title
The Role of Tauroursodeoxycholic Acid on Dedifferentiation of Vascular Smooth Muscle Cells by Modulation of Endoplasmic Reticulum Stress and as an Oral Drug Inhibiting In-Stent Restenosis
Authors
Hangqi Luo
Changzuan Zhou
Jufang Chi
Sunlei Pan
Hui Lin
Feidan Gao
Tingjuan Ni
Liping Meng
Jie Zhang
Chengjian Jiang
Zheng Ji
Haitao Lv
Hangyuan Guo
Publication date
01-02-2019
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 1/2019
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-018-6844-4

Other articles of this Issue 1/2019

Cardiovascular Drugs and Therapy 1/2019 Go to the issue