Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Research

The role of N-linked glycosylation in proteolytic processing and cell surface transport of the Cedar virus fusion protein

Authors: Kerstin Fischer, Selin Topallar, Franziska Kraatz, Martin H. Groschup, Sandra Diederich

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

N-linked glycans on viral glycoproteins have been shown to be important for protein expression, processing and intracellular transport. The fusion glycoprotein F of Cedar virus (CedV) contains six potential N-glycosylation sites.

Findings

To investigate their impact on cell surface transport, proteolytic cleavage and biological activity, we disrupted the consensus sequences by conservative mutations (Asn to Gln) and found that five of the six potential N-glycosylation sites are actually utilized. The individual removal of N-glycan g1 (N66), g2 (N79) and g3 (N98) in the CedV F2 subunit had no or only little effect on cell surface transport, proteolytic cleavage and fusion activity of CedV F. Interestingly, removal of N-linked glycan g6 (N463) in the F1 subunit resulted in reduced cell surface expression but slightly increased fusogenicity upon co-expression with the CedV receptor-binding protein G. Most prominent effects however were observed for the disruption of N-glycosylation motif g4 (N413), which significantly impaired the transport of CedV F to the cell surface, thereby also affecting proteolytic cleavage and fusion activity.

Conclusions

Our findings indicate that the individual N-linked modifications, with the exception of glycan g4, are dispensable for processing of CedV F protein in transfection experiments. However, removal of g4 led to a phenotype that was strongly impaired concerning cell surface expression and proteolytic activation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C, Middleton D, Yu M, Todd S, Foord AJ, Haring V, Payne J, Robinson R, Broz I, Crameri G, Field HE, Wang LF. Cedar virus: a novel henipavirus isolated from Australian bats. PLoS Pathog. 2012;8(8):e1002836.CrossRef Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C, Middleton D, Yu M, Todd S, Foord AJ, Haring V, Payne J, Robinson R, Broz I, Crameri G, Field HE, Wang LF. Cedar virus: a novel henipavirus isolated from Australian bats. PLoS Pathog. 2012;8(8):e1002836.CrossRef
2.
go back to reference Schountz T, Campbell C, Wagner K, Rovnak J, Martellaro C, DeBuysscher BL, Feldmann H, Prescott J. Differential innate immune responses elicited by Nipah virus and cedar virus correlate with disparate in vivo pathogenesis in hamsters. Viruses. 2019;11(3):291.CrossRef Schountz T, Campbell C, Wagner K, Rovnak J, Martellaro C, DeBuysscher BL, Feldmann H, Prescott J. Differential innate immune responses elicited by Nipah virus and cedar virus correlate with disparate in vivo pathogenesis in hamsters. Viruses. 2019;11(3):291.CrossRef
3.
go back to reference Chang A, Dutch RE. Paramyxovirus fusion and entry: multiple paths to a common end. Viruses. 2012;4(4):613–36.CrossRef Chang A, Dutch RE. Paramyxovirus fusion and entry: multiple paths to a common end. Viruses. 2012;4(4):613–36.CrossRef
4.
go back to reference Aguilar HC, Iorio RM. Henipavirus membrane fusion and viral entry. Curr Top Microbiol Immunol. 2012;359:79–94.PubMed Aguilar HC, Iorio RM. Henipavirus membrane fusion and viral entry. Curr Top Microbiol Immunol. 2012;359:79–94.PubMed
5.
go back to reference Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: mechanisms, and consequences for tropism and pathogenesis. J Biol Chem. 2020;295(9):2771–86.CrossRef Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: mechanisms, and consequences for tropism and pathogenesis. J Biol Chem. 2020;295(9):2771–86.CrossRef
7.
go back to reference Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983;209(2):331–6.CrossRef Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983;209(2):331–6.CrossRef
8.
go back to reference Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897–907.CrossRef Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897–907.CrossRef
9.
go back to reference Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology. 2019;29(1):2–21.CrossRef Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology. 2019;29(1):2–21.CrossRef
10.
go back to reference Gallagher PJ, Henneberry JM, Sambrook JF, Gething MJ. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J Virol. 1992;66(12):7136–45.CrossRef Gallagher PJ, Henneberry JM, Sambrook JF, Gething MJ. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J Virol. 1992;66(12):7136–45.CrossRef
11.
go back to reference Klenk HD, Wagner R, Heuer D, Wolff T. Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res. 2002;82(1–2):73–5.PubMed Klenk HD, Wagner R, Heuer D, Wolff T. Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res. 2002;82(1–2):73–5.PubMed
12.
go back to reference Vallbracht M, Rehwaldt S, Klupp BG, Mettenleiter TC, Fuchs W. Functional role of N-linked glycosylation in Pseudorabies virus glycoprotein gH. J Virol. 2018;92(9):e00084-18.CrossRef Vallbracht M, Rehwaldt S, Klupp BG, Mettenleiter TC, Fuchs W. Functional role of N-linked glycosylation in Pseudorabies virus glycoprotein gH. J Virol. 2018;92(9):e00084-18.CrossRef
13.
go back to reference Eichler R, Lenz O, Garten W, Strecker T. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virology journal. 2006;3:41.CrossRef Eichler R, Lenz O, Garten W, Strecker T. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virology journal. 2006;3:41.CrossRef
14.
go back to reference Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15(5):211–8.CrossRef Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol. 2007;15(5):211–8.CrossRef
15.
go back to reference Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW. N-linked glycosylation of west Nile virus envelope proteins influences particle assembly and infectivity. J Virol. 2005;79(21):13262–74.CrossRef Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW. N-linked glycosylation of west Nile virus envelope proteins influences particle assembly and infectivity. J Virol. 2005;79(21):13262–74.CrossRef
16.
go back to reference Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology. 2018;28(7):443–67.CrossRef Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology. 2018;28(7):443–67.CrossRef
17.
go back to reference Luo S, Hu K, He S, Wang P, Zhang M, Huang X, Du T, Zheng C, Liu Y, Hu Q. Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and viral entry. Virology. 2015;483:72–82.CrossRef Luo S, Hu K, He S, Wang P, Zhang M, Huang X, Du T, Zheng C, Liu Y, Hu Q. Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and viral entry. Virology. 2015;483:72–82.CrossRef
18.
go back to reference Wanzeck K, Boyd KL, McCullers JA. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am J Respir Crit Care Med. 2011;183(6):767–73.CrossRef Wanzeck K, Boyd KL, McCullers JA. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am J Respir Crit Care Med. 2011;183(6):767–73.CrossRef
19.
go back to reference Job ER, Deng YM, Barfod KK, Tate MD, Caldwell N, Reddiex S, Maurer-Stroh S, Brooks AG, Reading PC. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol. 2013;190(5):2169–77.CrossRef Job ER, Deng YM, Barfod KK, Tate MD, Caldwell N, Reddiex S, Maurer-Stroh S, Brooks AG, Reading PC. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J Immunol. 2013;190(5):2169–77.CrossRef
20.
go back to reference Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. MBio. 2014;5(1):e00862-13.CrossRef Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. MBio. 2014;5(1):e00862-13.CrossRef
21.
go back to reference McGinnes L, Sergel T, Reitter J, Morrison T. Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity. Virology. 2001;283(2):332–42.CrossRef McGinnes L, Sergel T, Reitter J, Morrison T. Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity. Virology. 2001;283(2):332–42.CrossRef
22.
go back to reference Hu A, Cathomen T, Cattaneo R, Norrby E. Influence of N-linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. J Gen Virol. 1995;76(Pt 3):705–10.CrossRef Hu A, Cathomen T, Cattaneo R, Norrby E. Influence of N-linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. J Gen Virol. 1995;76(Pt 3):705–10.CrossRef
23.
go back to reference von Messling V, Cattaneo R. N-linked glycans with similar location in the fusion protein head modulate paramyxovirus fusion. J Virol. 2003;77(19):10202–12.CrossRef von Messling V, Cattaneo R. N-linked glycans with similar location in the fusion protein head modulate paramyxovirus fusion. J Virol. 2003;77(19):10202–12.CrossRef
24.
go back to reference Moll M, Kaufmann A, Maisner A. Influence of N-glycans on processing and biological activity of the Nipah virus fusion protein. J Virol. 2004;78(13):7274–8.CrossRef Moll M, Kaufmann A, Maisner A. Influence of N-glycans on processing and biological activity of the Nipah virus fusion protein. J Virol. 2004;78(13):7274–8.CrossRef
25.
go back to reference Carter JR, Pager CT, Fowler SD, Dutch RE. Role of N-linked glycosylation of the Hendra virus fusion protein. J Virol. 2005;79(12):7922–5.CrossRef Carter JR, Pager CT, Fowler SD, Dutch RE. Role of N-linked glycosylation of the Hendra virus fusion protein. J Virol. 2005;79(12):7922–5.CrossRef
26.
go back to reference Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, Lee B. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol. 2006;80(10):4878–89.CrossRef Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, Lee B. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol. 2006;80(10):4878–89.CrossRef
27.
go back to reference Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108(2):193–9.CrossRef Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991;108(2):193–9.CrossRef
28.
go back to reference Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRef Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRef
29.
go back to reference Fischer K, Groschup MH, Diederich S. Importance of endocytosis for the biological activity of Cedar virus fusion protein. Cells. 2020;9(9):2054.CrossRef Fischer K, Groschup MH, Diederich S. Importance of endocytosis for the biological activity of Cedar virus fusion protein. Cells. 2020;9(9):2054.CrossRef
30.
go back to reference Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A, Ebihara H, Feldmann H, Hoenen T. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol. 2014;88(18):10511–24.CrossRef Watt A, Moukambi F, Banadyga L, Groseth A, Callison J, Herwig A, Ebihara H, Feldmann H, Hoenen T. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol. 2014;88(18):10511–24.CrossRef
31.
go back to reference Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12643–9.CrossRef Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12643–9.CrossRef
32.
go back to reference Diederich S, Moll M, Klenk HD, Maisner A. The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280(33):29899–903.CrossRef Diederich S, Moll M, Klenk HD, Maisner A. The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280(33):29899–903.CrossRef
33.
go back to reference Bradel-Tretheway BG, Liu Q, Stone JA, McInally S, Aguilar HC. Novel functions of Hendra virus G N-glycans and comparisons to Nipah virus. J Virol. 2015;89(14):7235–47.CrossRef Bradel-Tretheway BG, Liu Q, Stone JA, McInally S, Aguilar HC. Novel functions of Hendra virus G N-glycans and comparisons to Nipah virus. J Virol. 2015;89(14):7235–47.CrossRef
34.
go back to reference Biering SB, Huang A, Vu AT, Robinson LR, Bradel-Tretheway B, Choi E, Lee B, Aguilar HC. N-Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization. J Virol. 2012;86(22):11991–2002.CrossRef Biering SB, Huang A, Vu AT, Robinson LR, Bradel-Tretheway B, Choi E, Lee B, Aguilar HC. N-Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization. J Virol. 2012;86(22):11991–2002.CrossRef
35.
go back to reference Segawa H, Yamashita T, Kawakita M, Taira H. Functional analysis of the individual oligosaccharide chains of Sendai virus fusion protein. J Biochem. 2000;128(1):65–72.CrossRef Segawa H, Yamashita T, Kawakita M, Taira H. Functional analysis of the individual oligosaccharide chains of Sendai virus fusion protein. J Biochem. 2000;128(1):65–72.CrossRef
36.
go back to reference Zimmer G, Trotz I, Herrler G. N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol. 2001;75(10):4744–51.CrossRef Zimmer G, Trotz I, Herrler G. N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol. 2001;75(10):4744–51.CrossRef
37.
go back to reference Sagar M, Wu X, Lee S, Overbaugh J. Human immunodeficiency virus type 1 V1–V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol. 2006;80(19):9586–98.CrossRef Sagar M, Wu X, Lee S, Overbaugh J. Human immunodeficiency virus type 1 V1–V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol. 2006;80(19):9586–98.CrossRef
38.
go back to reference Lavie M, Hanoulle X, Dubuisson J. Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front Immunol. 2018;9:910.CrossRef Lavie M, Hanoulle X, Dubuisson J. Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front Immunol. 2018;9:910.CrossRef
39.
go back to reference Sommerstein R, Flatz L, Remy MM, Malinge P, Magistrelli G, Fischer N, Sahin M, Bergthaler A, Igonet S, Ter Meulen J, Rigo D, Meda P, Rabah N, Coutard B, Bowden TA, Lambert PH, Siegrist CA, Pinschewer DD. Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog. 2015;11(11):e1005276.CrossRef Sommerstein R, Flatz L, Remy MM, Malinge P, Magistrelli G, Fischer N, Sahin M, Bergthaler A, Igonet S, Ter Meulen J, Rigo D, Meda P, Rabah N, Coutard B, Bowden TA, Lambert PH, Siegrist CA, Pinschewer DD. Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog. 2015;11(11):e1005276.CrossRef
40.
go back to reference Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol. 2004;78(18):9605–11.CrossRef Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J Virol. 2004;78(18):9605–11.CrossRef
Metadata
Title
The role of N-linked glycosylation in proteolytic processing and cell surface transport of the Cedar virus fusion protein
Authors
Kerstin Fischer
Selin Topallar
Franziska Kraatz
Martin H. Groschup
Sandra Diederich
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01864-5

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.